International Journal of Statistical Distributions and Applications
2020; 6(1): 1-9

http://www.sciencepublishinggroup.com/j/ijsda

doi: 10.11648/j.ijsd.20200601.11

ISSN: 2472-3487 (Print); ISSN: 2472-3509(Online)

2 -4 ’ ar [ -
seiencer

Science Publishing Group

Variable Selection for Partially Linear Additive Model Based
on Modal Regression Under High Dimensional Data

Yafeng Xia*, Lirong Zhang

School of Sciences, Lanzhou University of Technology, Lanzhou, P. R. China

Email address:
gsxyf01@163.com (Lirong Zhang)
*Corresponding author

To cite this article:
Yafeng Xia, Lirong Zhang. Variable Selection for Partially Linear Additive Model based on Modal Regression under High Dimensional Data.
International Journal of Statistical Distributions and Applications. Vol. 6, No. 1, 2020, pp. 1-9. doi: 10.11648/j.ijsd.20200601.11

Received: December 19, 2019; Accepted: January 9, 2020; Published: April 17, 2020

Abstract: In this article, we focus on the variable selection for partially linear additive model under high dimensional
data.Variable selection is proposed based on modal regression estimation with Adoptive Bridge Method.Using the B-spline
basic function to approximate the additive function, a penalty estimation objective equation is constructed.It establishes and
proves that the variable selection methods have oracle property.Numerical simulations tested the performance of the proposed
methods in a finite sample and verified the significance of the proposed estimation and the variable selection methods. At the
end of the article, we attach the detailed derivation of the theoretical results.Therefore, the correctness of the method used is
verified theoretically and practically.
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1. Introduction

Variable selection of model is one of the hot topics
in modern statistics.With the progress of science and
technology continuously, statisticians need to process large
scale data and select valuable information from these
large scale data for statistical analysis.In modern scientific
research and technological development, the emergence
of high dimensional data has brought new challenges
to statisticians.The emergence of high-dimensional data
and new scientific problems have changed the ideas of
traditional statistics and data analysis.Reducing dimension and
screening characteristic variable have become the primary
tasks for high dimensional statistical problems.The large
scale calculations brought by the reducing dimension and
screening characteristic variable process will also promote the
continuous improvement of the algorithm.

The partially linear additive model is proposed by Hastie
and Tibshirani [1] combining the basic additive model and the

characteristics of the partially linear model.It can be defined as

follows:
d

Y =X"Bu+ > 91(Z) +e (1)
1=1

where Y is response variable, X = (X;7, X", , X, )
and 7 = (ZlT, ZQT, cee ZdnT) are two group of covariates,
91 (Z) -+ ,9a, (Z)) is d,-dimensional vector of additive,
B8 = (b1, ,0B4,) is pp-dimensional vector of unknown
regression coefficient, € is model error, which is independent
of X, Z, and E(¢|X) = 0.The dimensions p,, and d,, in the
article increase with the increase of the sample size, that is, the
sizes of p,, and d,, are related to that of n.

A large number of scholars have studied the partially
linear model.Guo [2] proposed an estimation method based
on compound quantile regression for semi-parametric partially
linear additive model.Liu [3] studied the asymptotic normality
of the parameter estimation, used the SCAD penalty function
to identify important linear components, it proved that the
estimation of non-zero components has Oracle properties.Xia
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[4] focus on the variable selection for semiparametric model
with response missing at random.Fan and Huang [5] used
profile least squares to estimate the variables of the parameter
part, discussed the estimation with asymptotic properties,
and tested the model by the Profile generalized likelihood
ratio method.Hoshino [6] studied the estimation problem for
partially linear additive quantile regression model.

In the high-dimensional model, Meinshausen and Bhlmann
[7] studies High-dimensional graphs and variable selection
with the lasso.Zhang and Huang [8] discussed The sparsity
and bias of the lasso selection in high-dimensional linear
regression.Using the bridge penalty method, Wang et al.
[9] studies variable selection and parameter estimation in
the partially linear model and high-dimensional generalized
linear models.Li et al.[10] discussed the variable selection of
the generalized semi-varying coefficient model in the ultra-
high-dimensional case.Inspired by the above literature, this
paper considers the robust estimation and variable selection
for partially linear additive model based on the method
of modal regression and adoptive bridge estimation under
high dimensional data.lt is proved by theoretical properties
that adoptive bridge estimation can accurately screen non-
zero parameters with probability tending to 1 under high-
dimensional data.

2. Variable Selection Method

Similar to the reference [11], the basis function
approximation is used to replace the additive function in (1).

Let
B(U) = (By(U), - , Bga(U))"

be B-spline basic function with the order of m + 1 where
gn = K +m + 1 and K is the number of interior knot.In
order to obtain the consistent estimation of {g; (Z;)}, we use
empirically centralized B-spline function subspace

qn T n
Slo = {S|S: =1 Bj(zl) 'yzj,zizls(Zﬂ) :0},
its empirically centralized basis function is
Vi (1) = Bj (1) — Zi:l Bj(Zu)/n.j =1, qn,
then
dn T
g1 (Zl) ~ Zl:l Bj(zl) vljvl = ]-7 27 e

can be approximated by

291 (Z)

qn

g1 (z0) = >t () =",
j=1

¢ 1
_l’_f

Aww| Bk ~ Alkwk’ﬁi{p 5

ArwiC

where ¢ () = (Y (21), g, (21)" and 5 =

(Vi1 Yi2s -+ s Vig )T are B-spline  coefficients.Denote

Ya = (Wu (Zir) -+ g (Zg))"  and @, =
ool T Using the modal regression method
il idy, g g

proposed by Yao [12], we obtain the estimation 3, and 7,
of 3,, and ~y,, by maximizing equation (1).

n

Qn (yn:Br) =D én (Vi = X[ Bn =¥ y), (@

i=1

where ¢y, (t) equals h=1¢(t/h), h is bandwidth which
plays the role of robust estimation, and ¢ (¢) is a kern
density function.In order to calculate and discuss properties
conveniently, in this paper we use the normal kernel density

function, that is, ¢, (t) = \/217}1
penalty function based on equation (1), we have

¢~ 217 .Consider the following

Pn

Py (Y, Bn) = Qn (s Bn) = Mkwr Y |Buk|®
k=1

i, 3)
= awr Y il
1=1

where

1Vnill gr = A/ Vo H vt H = /(lﬂﬁzk; (2) Y (2)dz,

A1 and Ag; are tuning parameters more than 0.wy and w;
are the penalty weights for the k-th and I-th components,
Bnk
generally, 7,,; and /S’nk are non-penalty estimation of ,; and

Bni, respectively.0 < ¢ < 1, the definition of the adoptive
bridge estimation is as follows:

respectively.We default wy, = and w; = |Yu| "

0= (30.Bn) = g max (P (1. B0)} . @)
YnsBn

It is more difficult to maximize the objective function (2)

for a given tuning parameter Aj; and A9 directly.Assuming
T

that the initial value 6,, = is very close to

(5710, %o)
the maximum value of the objective function (2), the initial
value is usually considered to be the non-penalty estimation
of equation (2). We use the local quadratic algorithm (LQA)
proposed by Fan [13] to approximate the penalty function. If

5&0) = 0, otherwise

2
> ; &)

9~§LO) is very close to 0, let

(|ﬁnk|2 -

¢—1
B9
82|

8L
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¢-1
¢ 1 2AWIG ||Vt T
Novwonlmll € ~ )\lel‘ 20 ‘H s ’ i (ﬁH%z — 7 vaff’) : 6)
Tni H
H

Denote

G(z,2,h) = E {th(e)?p( =2, 7= z} :

an:rrliazx{)\lka)\ﬂ:k:]—va"' ,81;121,2,"' 782}7

3. Asymptotic Properties of Variable
Selection

Let H, represent the whole of function h (t) that satisfies
certain conditions in interval [0, 1], A™ (¢) is m-th derivative
of h(t), it is continuous and satisfies v-th order condition
of Holder, r = m + v.That is, there is a constant value
My € (0,00) make |h™ (s) — ™ (t)| < Mpls —t|" is true,
where s,t € [0,1].In order to prove the conclusion of the
theorem, the following regular conditions are needed in this
paper.

B E(a(Z)) =0and g () € Hp, 1 =1,
r>1/2.

(B2) Covariates Z; is a continuous density function
fz (21) , constants d; and d2 enables f,, (z;) to satisfy 0 <
01 < fz, (z1) < 2 < oo oninterval [0, 1].

(B3) Random variables X;; and the eigenvalues of
E{X,X] ‘ Z;} are uniformly bounded, where 1 < i < n,
1<k <py.

(B4) Let ty,---,tx be the interior knots of [0,1].
Moreover, let tg = 0, tx+1 = 1, = t; — t;—1 and
& = max{¢&; }.Then, there exists a constant Cy such that

Jdns

ey < O max{léen — &1} = o),

(B5) Let F(x,z,h) and G(z,z,h) are continuous with
respect to («, z).In addition, F(x, z,h) < 0,Vh > 0.

(B6) E (¢ ()|, 2) = 0, E(¢”h(€)2‘x7z),
E ((b’h(s)?" x, z) and F (¢"'}, (¢)| x, z) are continuous with
respect to (z, z).

(B7) Apwnsn~ Y2 — 0, where A, iS A OF Ay , wy, iS
W1k Or wo; and s,, iS S1 OF So.

(B8) For a, and b, there are y/na,, — 0 and \/nb,, — oo
where n — oo.

Remark I Conditions (B1)-(B3) are common conditions for
partially linear additive model; Condition (B4) indicates that
co, -+ ,Cr+1 18 a Cp-quasi-uniform sequence of partitions
of [0,1]; Conditions (B5)-(B6) are required for the modal
regression.Reference Yao[12] thought E (¢, (¢)|z,2) =

F(z,2,h) =FE{¢", (e) | X =x,Z =z},
bn:r%iln{)\lk,)\gl:k:1,2,--- ,81;l21,2,"' ,82}.

0 guarantees the consistency of the estimation.If the
error distribution density is symmetrical about O, these
conditions are automatically satisfied; Condition (B7) is an
indispensable condition for the adoptive bridge estimation of
convergence and oracle properties; Condition (B8) represents
the assumption of adoptive bridge estimation.

Now, we discuss the asymptotic properties of penalty
estimation £3,, and Yn-Let g9 () and B, %) be the real value
of g; (z;) and j3,,.Default Bnk(o) = 0 can represent an unrelated
variable, where k = s1 + 1,--- , pp, Bnk(o) = () can represent
a function corresponding to an important variables where k£ =
1,2, --s;.Similarly, we have g;(©) (z1) = 0 and s (1) #0
where l = so +1,--- ;dy,andl = 1,2, -- - 39, respectively.

First, we give the consistency of the penalty estimations.

Theorem 1 Suppose that the regular conditions (B1)-(B6)
hold, the number of knots K = O(n*/*™*+1) 0 < ¢ < 1,
then we have

(1) HBnk - Bnk © H = OP (n_T/2T+1 + an),

() (|3 (z0) — 9O (20)|| = Op (R +ay,).

Next, we can obtain the sparsity of the penalty estimation
under certain conditions.

Theorem 2 Suppose that the regular conditions (B1)-(B6)
hold, OA< ¢ < 1, then we have

)] Bnk :O7k:51 +1,-- , pn,

(11) gl :Oal252+17"' 7dn~
Denote

T " T r "
6,”1 = (ﬂnl" . ’ﬁnsl> 7'7n1 = (7.,,]17 e 7’771,52) ’

and let Bnl(o) and 7,1(? be the real true of f,; and Y,
respectively. Their respective corresponding covariates are
labeled with X; and ;. In addition, define

T =E(¢",(e) 1V]) = E(F (z,2,h) U, 97),
Q=E(¢", (e) U1 X{) = E(F(z,2,h) V1 X]).

Finally, we give the asymptotic normality of the non-zero
components in parameters.

Theorem 3 Under the conditions of Theorem 2 and (B1)-(B8), we have

i (B =) 2 (02718,
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_ T _ T _
WhereFisE<G(X,Z,h)X1X1>,EisE<F(X,Z,h)X1X1) and X is X; — QT Y10,

4. Estimation Algorithm and Parameter Selection

4.1. Estimation Algorithm

The following is the algorithm which has combined EM algorithm with LQA algorithm, it is suitable for this paper.Assume

that the previous estimations are &T(:ln)

and ﬁAf:,Z) respectively, where [ = 1,2,--- ,p, and k = 1,2, - - - d,, .If they are very close to

0, then let ’yT(L:"“) =0 and Bffk”“) = 0; otherwise, iterative estimation is performed according to the following algorithm steps.

Denote

Z;T = (XiTvlllzT)Taen = (ﬁna’Yn)T

and let

¢c—1
H?' o 7)‘1dnwdn<

7

E>\1,>\2 (Q’Elm)) = d’LCLg {)\uwlg .

Based on the EM algorithm, we can obtain the penalty
estimation of (3) as follows:
Step 1(E-step): First, the non-penalty estimation in (3) is the

- . T
initial value 9(9) = (ﬁgo), ~(0)) and the termination error,

0 < & < 1075.Then let m = 0 and update 7 (z Qn(m)) by

o mY o N Ty (m)
W(l‘en )oci_zld)h(Yz Zi" On )7

where

7 n

61 = argmanc , X {m (il logn (Vi — 27T 6(™)}
= (D7) 7" DY;,

D is a diagonal matrix of n x n whose elements of the i-th

diagonal are 7 (z 0,,(™ )

Due to

00 = arg max,, Sy {m (010" Ylogén (¥; — 27760},

and
1 t2
t) = e 2n7,

By calculating the logarithmic function, we have the target
function

Q= S {m (o) (Yi — 27 o)),

Next, we maximize the target function by calculating partial
derivatives, we have

00 = argma S ({0105 Ylogon (V; — 7704}

— (z:"pz;) " 7" DY,

0]
v

¢

H

—1 (0) ¢—1
H, X21w1(|Bn1 ‘ st s A2p, Wp,

¢—1
,Bnpn((])’ } .

Step 2(M-step): Update 6™ by

0(m+1) = arg maxz {71' (z
i=1

ﬁ (”L)T ( (m)) (m)
+ 50 ZAIN 0r" )0y,

~ (ZiTDZi +n ZAW (0;’”)) ~ 4Dy,

0 Yo (3 270))

Step 3: Repeat Step 1 and Step 2 continuously until the
algorithms are convergent and the final estimation 0,, =

(Brm %) , where Bn = (Ipn XPn o Op” Xd,Lq) én and '?n =
(Od,gxcpns Ld,gxdng) 0,, is obtained.

4.2.  The Selection of Bandwidth, Node and Tuning
Parametet.2.1. Bandwidth Selection

In order to select the bandwidth handily, we assume that
X and Z are independent of each other.On the basis of the
asymptotic variance obtained by Theorem 3 and the variance
of the Least square B-spline estimation proposed by Zhao [14],
we can get the ratio of two asymptotic variances as

where
0* = E(¢%),G (h) = E{¢/), ()}, F (h) = E{¢"}, ()} -
Define the optimal bandwidth as follows:
hopt = argminy, r(h) = argmin G(H)F~2(H).  (7)

In practical application, since the distribution of errors are
unknown, the bandwidth obtained by equation (5) cannot be
used directly.A feasible method is to estimate F'(h) and G(h)
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by

LS ey ®

=1

n

OEES SACRE

Then we can obtain the estimation of (h) by
#(h) = G(M)F~2(h) /62,

where

dn
& =Yi— X B0 =Y i (2),
=1

g1 (%) and Bn are initial estimations based on the robust
method.

In practical, after getting the estimation of r(h), we use the
lattice point search method to obtain the h,y¢.According to
the suggestion in reference by Yao [12], some of the possible
lattice shops can be taken as h,,; = 0.56 x 1.027, where
j=0,1,--- k, kis 50 or 100.

4.2.2. The Selection of Node K and Tuning Parameter

In order to implement the estimation algorithm handily, it is
necessary to select the appropriate number of internal nodes K
and the tuning parameters A1; and \o; in the adoptive bridge
penalty estimation. Denote

A A

)\lk = 7a)\2l = m

)

Bnk

where 7,,; and Bnk are non-penalty estimations of 7y,,; and 3,
respectively. A and K are selected by CV criterion:

VKN =30 Y- el - xTB) a0
i=1

where f}(_i) and Bé‘“ are penalty estimations obtained by
excepting the i-th data from equation (4).The optimal node
K, and tuning parameter A, are obtained by

(Kopta)\opt) :l’l’éai(CV (K, A) (11)

5. Numerical Simulations

We simulate data from model (1), where g; (z;) are the d,,-
dimensional vectors, g1 (Z;1) = 2Z;1 — E (2Z:1), 92 (Zi2) =
(3Zia = 1)* = E (3% — 1)) and g3 (Zi) = 4sin (47 Zis) —
E (4sin (47 Z;3)), the rest of g;(z;) are zero; B, is pp-
dimensional vector, 51 = 1.8, 85 = 1, 83 = 0.5, B4 = —0.8,
Bs = —0.3, the rest of 3, are zero.In this paper, both p,
and d,, increase as the sample size n increases gradually, so
we assume p, = d,.To perform this simulation, we take

the covariates X ~ N(0,1) and Z ~ U(0,1).The model
error €; is subject to the three cases of N(0,1), ¢(4) and
0.25N(0,6) +0.75N (0, 1) respectively.The simulated sample
size n is taken as 100, 200 and 400 respectively.And the
corresponding p,, is taken as 10, 20 and 40.Repeat 400 times
for each simulation and calculate its average.We use a third
order B-spline basic function to approximate the function of
the variable coefficient part in the simulation, and optimal node
and tuning parameters are selected by CV method.In order
to test the effect of variable selection under high-dimensional
data, we also calculate the penalty estimations through LASSO
and adoptive bridge estimation based on the modal regression
in this paper.We consider the cases of ( = 0.6 and ¢ = 0.85 in
the adoptive bridge estimation.

To illustrate the proposed method in this paper, the efficient
estimations ¢ (z;) will be assessed by using the square root of
average square errors (RASE)

1/2

grid
RASE = {n‘l > gz — g (zz)|2}
=1

The generalized mean square error (GMSE) is
used to evaluate the performance of Bn GMSE =
(Bk — ﬁk> E (XXT) (Bk — Bk) .CN and CP are used to
represent the number of important variables for correctly
estimating additive coefficients and parameters respectively.

It can be seen from Table (1) that when the error obeys
standard normal distribution, t-distribution or mixed normal
distribution, the values of MRSE and GMSE under adoptive
bridge estimation method are generally smaller than those
under LASSO.This conclusion is still true when the sample
size and dimension are getting larger, and as the dimension
and sample size increase, the estimation accuracy of the model
also increases.If the dimension and sample size are fixed, the
values of RASE and GMSE when the error obeys the normal
distribution are smaller than those when the error obeys t-
distribution, which indicates that the simulation effect is better
under the normal distribution.

6. Proof of Theorems

Proof of Theorem 1 Let é=n""/?"*! 4+ q, and v =
(vf,vd )T, where v{' is a p,,-dimensional vector, v1 is a d,,-
dimensional vector.Denote 6nzﬁn(0) +6vy and v, = 7,0 +
dvy.For part (i), we first prove for any given v{ and v, there
exists

Pr {Suan (Yn, Bn) — P (’yn(o),/)’n(o)) > 0} — 1,

n — oc. 12)

Define



6 Yafeng Xia and Lirong Zhang: A necessary condition for the existence of a certain resolvable pairwise balanced design

IT (Yn Bn) :% {Pn (Yn, Bn) — P (%(o), 5n(o))}

S 0" (e + 15 R(Z)) (XTv1 + UTy)”

i=1

I 5
=-% ;Qﬁlh (ei + 14, R(Z:)) (X o1+ Wi v2) + ie

3
F R ) (Ko + )’
=1

dn Pn
n ¢ n ¢
+ ?Allwl § {||’an||§{ - ’ ’)/nl(O)HH} + ?Akak E {'677,k|C - lﬁnk(O)’ }
=1 k=1

A
=ln1 + In2 + InS + In4 + In57

where ¢ is betweene;+17 R (Z;) ande;+17 R (Z;)—6 (X vy + ¥ vy), and we denote R (U) = (Ry (U),--- , Ra, ()
R (Z) = g0 (Z) — " yoy and | = 1,2,--- . d,. According to the regular conditions (B1) and (B2) and the conclusions in
Schumaker [15], there exists ||[R; (Z;)|| = O (K~").We get E (¢5," (€;) |z, z,u) = 0 by expanding I,,; by Taylor formula and
regular conditions (B4) and (B6).By simple calculation, we get

Ly =—K7'6Y &), (e + 15, R(Z:)) (X[ 01 + U] vy)
i=1
=0, (nK™") ]l

Similarly, we get I,,1 = o, (In2) and I,3 = 0p, (In2). For I,5, by using the inequality Holder, we get

o 12 /o, N\ /2
|In5| < 02/\2wk’<pn71 (Z pn2> <Z <ﬂnk - 6nk(0)> ) k=1,2,--+ 5.
k=1 k=1

According to the regular condition (B7) we have |I,,5| < ColpwyCp, /2§ ||v|| — 0.That is, I,,5 is consistently controlled
by I,,2. Similarly, I,,4 is consistently controlled by I,,o.

In summary, according to the regular condition (B5) F' (z, z, h) < 0, so if we select a sufficiently large C and a vector of ||v|]
that can satisfy the condition, IL,, (., 8,) < 0, which means

Pr {suan (Y, Bn) — Pn (’yn(o),ﬁn(o)) > 0} — 1.

Thus, there is a local maximum point that satisﬁes’

Bt — B H = O, (n™"/?"+1 +q,). Thatis, part (i) is proven. We
use the similar method in reference [12] to complete the second part of the proof.
Proof of Theorem 2 First, we prove part (i).According to the conclusion of Theorem 1, for any given sufficiently small v =

C’n_r/(ff“), when n — oo, for any ~y,; that satisfies ||y, — ’YT(L?)H = Op(nﬁ) and ,, that satisfies ||Bnr — 67(33” =
Op(n?+1),k =1,--- ,s1, with probability tending to 1, we have
8P7'l nsy n .
g;ﬁk)<0, if 0 < Buk < v,wherek =s1 + 1,81 +2,--* ,pn, (13)
nk
apn n»y n .
W >0, if —v < Bux <0,wherek=s7 +1,81 +2,-- ,pn- (14)
nk

Similar to the proof of Theorem 1, we get

0P, ('Ynh 6nk)
aBnk:

By the regular conditions (B3), (B7) and (B8), with probability tending to 1, we have \opn~"/2"t1 > b,n="/2"t1 4 oo
where k = s1 + 1, , p,. Therefore, the sign of P, (Y, Bnk)/0Bnk is completely determined by the sign of 5,,, that is, the
equations of (15) and (16) are established.

= —nAaC [‘ﬁ”k‘c_lsgn (Bnk) + Op ("_5\2151(_1”%)} '



International Journal of Statistical Distributions and Applications 2020; 6(1): 1-9 7

For the proof of part (ii), using a method similar to the above, with probability to 1 we have g,; (2;) = 0, where | =
s+ 1,--+ d,, that is, the conclusion of part (ii) is established.

Proof of Theorem 3 From the proof of Theorem 1 and Theorem 2, we know that P, (7, 3,) attains the maximal value at
(BT,,0)7 and (4T}, 0)T with probability tending to 1 when n — co. Denote

nl»
apn ny~n A T
Pnl (’anﬂn) = % then ( ;I;ao>

must satisfy the following equation

Le (620" (35.0)")

n Pn (15)
1 / T2 T3 5 |67 A
= ZXm¢ h (Yi -V A — X 5nk) - AzkwkCZ Bnk|  sgn (5nk) =0.
i=1 k=1
Expanding the second term below the equation (17) by Taylor formula, we have
n! Z Zi {¢lh (1) + ¢ (&) [XiTR* (i) — 2z} (Bnl - 5n1(0)) - Wi (%1 - %1(0)”
i=1 (16)
~ 2 N
+¢";, (i) {XiTR* (U) — Z4 (5n1 - 5n1(0)) -wh (’%1 — 'Ynl(o)):| } + 0p (5711 - ﬂnl(o)) =0.
where ; is between ¢; and Y; — W14, — X?{Bnl, R*(u) = (Ry(u), -+, Rs, (u))T According to the regular conditions
\/nb, — oo and (Bnk — Bnk(o)) = 0, (1), we obtain
Fo1 = 1@ = (T4 0, ()7 {=Q (B = 82 @) + T } an

where .
T,=n"" ZWil (91, (1) + 6", (20) X R (UD)].
i=1

Substituting into equation (16), we obtain

E <n—1 th () Q"Y1 (X - m};r—lgT]> =0.
=1

After calculations, we have
n _ \_,T )
{n_l Z "y (€) ZinZiy + 0p (1)} Vvn (5n1 - Bnm)
i=1

=n"V2N " Zad!) () 402N Zud”), (@) XTR(U) — 072" Zind”), (21) (Y7 + 0, (1) T
=1 =1 =1
= dJn1+ Jn2 + Jn3a

where )u(“ = X — Q, 7Y, 71T;.According to the definition of R* (Uy), for J,,2, we have

T =02 320" () (21— BT B(T,) T Wa ) XER" (U)
i=1

#2306 (@) BT (B(Tn) ™ = 0T Wi ) XT R (U)
i=1

= Jn21 + Jnoo.

Since (d)”h (&4) {XZ-T — E(Qn)T |:(Tn)71\:[ji1Ti| \Ilzl}) = 0, we have

nV2 N g () <X¢T —~E(Q,)"E (Tn)71Wi1T) Vir = op (1).
=1
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Combining W, = (Wi1T7Wi2T7"',WiPnT) and
|R* (U

)| = op (1), we get Jp01 = 0p (1).Similarly, Jy,00 =
op (1).

Further, according to the regular conditions,
T

n! Z¢” (1)

theorem there is

n
Jnl - n_1/2 Z (b/h (Ei) Xil
i=1

we have

XX i RS> According to the Central limit

T

L N@OT).  18)

T

where ' = E [ G (#,2,h) X1 X,

For any vectors p whose components are not all zero,

Z 0i&i-

p"Pui=mn I/QZ/J ¢ (€1)

n T

where 0,2 = n 'Y G(X,Z,h)pT X;1X ;1 p.Under the
i=1

given conditions of { X;, Z;}, &; is independent with mean zero

and variance one.

Then, we verify Linderberg’s central limit theorem.If

max 0i2 P

= — 0, 19
21;1 0i2 (1)

holds, then

0:2 D
Zl 1 0151/ Zz 1 — N O 1)
and thus the equation (18) holds.

i

2
we have 0,2 < n71G (X, Z,U, h) ||p||2H211H and Hzl ‘ =
||le — QTT_IWHH < ||le|| + ||QTT_1WZ'1H . ACCOI’dil’lg
to the regular conditions, we have max; || Z;|| n=1/2 = o, (1)
and max; |[QTT'W;|| = o,(1). By applying Slutsky
theorem again, then we can prove that equation (18) is true.

In conclusion, we obtain

vn <Bn1 - ﬂm(o)) 2N

_T\? — 2
Next, we prove (19). Owing to <pTZ“> < ||p||2HZi1

(0,57'rs7H).

7. Conclusion

Combining the results of the above theoretical proof
and numerical simulations, we can get the following
conclusions.It is proved by theoretical properties that adoptive
bridge estimation can accurately screen non-zero parameters
with probability tending to 1 under high-dimensional
data.Numerical simulations tested the performance of the
proposed methods in a finite sample and verified the
significance of modal regression estimation and the variable
selection methods.
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