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Abstract: In this article, we focus on the variable selection for partially linear additive model under high dimensional
data.Variable selection is proposed based on modal regression estimation with Adoptive Bridge Method.Using the B-spline
basic function to approximate the additive function, a penalty estimation objective equation is constructed.It establishes and
proves that the variable selection methods have oracle property.Numerical simulations tested the performance of the proposed
methods in a finite sample and verified the significance of the proposed estimation and the variable selection methods. At the
end of the article, we attach the detailed derivation of the theoretical results.Therefore, the correctness of the method used is
verified theoretically and practically.
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1. Introduction

Variable selection of model is one of the hot topics
in modern statistics.With the progress of science and
technology continuously, statisticians need to process large
scale data and select valuable information from these
large scale data for statistical analysis.In modern scientific
research and technological development, the emergence
of high dimensional data has brought new challenges
to statisticians.The emergence of high-dimensional data
and new scientific problems have changed the ideas of
traditional statistics and data analysis.Reducing dimension and
screening characteristic variable have become the primary
tasks for high dimensional statistical problems.The large
scale calculations brought by the reducing dimension and
screening characteristic variable process will also promote the
continuous improvement of the algorithm.

The partially linear additive model is proposed by Hastie
and Tibshirani [1] combining the basic additive model and the

characteristics of the partially linear model.It can be defined as
follows:

Yi = Xi
Tβn +

dn∑
l=1

gl (Zl) + εi (1)

where Y is response variable, X =
(
X1

T , X2
T , · · · , Xpn

T
)

and Z =
(
Z1

T , Z2
T , · · ·Zdn

T
)

are two group of covariates,
g1 (Zl) , · · · , gdn (Zl) is dn-dimensional vector of additive,
β = (β1, · · · , βdn) is pn-dimensional vector of unknown
regression coefficient, ε is model error, which is independent
of X , Z, and E(ε|X) = 0.The dimensions pn and dn in the
article increase with the increase of the sample size, that is, the
sizes of pn and dn are related to that of n.

A large number of scholars have studied the partially
linear model.Guo [2] proposed an estimation method based
on compound quantile regression for semi-parametric partially
linear additive model.Liu [3] studied the asymptotic normality
of the parameter estimation, used the SCAD penalty function
to identify important linear components, it proved that the
estimation of non-zero components has Oracle properties.Xia



2 Yafeng Xia and Lirong Zhang: A necessary condition for the existence of a certain resolvable pairwise balanced design

[4] focus on the variable selection for semiparametric model
with response missing at random.Fan and Huang [5] used
profile least squares to estimate the variables of the parameter
part, discussed the estimation with asymptotic properties,
and tested the model by the Profile generalized likelihood
ratio method.Hoshino [6] studied the estimation problem for
partially linear additive quantile regression model.

In the high-dimensional model, Meinshausen and Bhlmann
[7] studies High-dimensional graphs and variable selection
with the lasso.Zhang and Huang [8] discussed The sparsity
and bias of the lasso selection in high-dimensional linear
regression.Using the bridge penalty method, Wang et al.
[9] studies variable selection and parameter estimation in
the partially linear model and high-dimensional generalized
linear models.Li et al.[10] discussed the variable selection of
the generalized semi-varying coefficient model in the ultra-
high-dimensional case.Inspired by the above literature, this
paper considers the robust estimation and variable selection
for partially linear additive model based on the method
of modal regression and adoptive bridge estimation under
high dimensional data.It is proved by theoretical properties
that adoptive bridge estimation can accurately screen non-
zero parameters with probability tending to 1 under high-
dimensional data.

2. Variable Selection Method
Similar to the reference [11], the basis function

approximation is used to replace the additive function in (1).

Let
B(U) = (B1(U), · · · , Bqn(U))T

be B-spline basic function with the order of m + 1 where
qn = K + m + 1 and K is the number of interior knot.In
order to obtain the consistent estimation of {gl (Zl)}, we use
empirically centralized B-spline function subspace

S0
l =

{
s| s =

∑qn

j=1
Bj(zl)

T
γlj ,

∑n

i=1
s (Zil) = 0

}
,

its empirically centralized basis function is

ψlj (zl) = Bj (zl)−
∑n

i=1
Bj (Zil)/n, j = 1, · · · , qn,

then

gl (zl) ≈
∑qn

l=1
Bj(zl)

T
γlj , l = 1, 2, · · · , dn.gl (Zl)

can be approximated by

gl (zl) ≈
qn∑
j=1

γljψlj (zl) = ψl
T γl,

where ψl (zl) = (ψl1 (zl) , · · · , ψlqn (zl))
T and γl =

(γl1, γl2, · · · , γlqn)
T are B-spline coefficients.Denote

ψil = (ψll (Zil) , · · · , ψlq (Zil))
T and Ψi =(

ψTi1, · · · , ψTidn
)T

.Using the modal regression method
proposed by Yao [12], we obtain the estimation β̂n and γ̂n
of βn and γn by maximizing equation (1).

Qh (γn, βn) =

n∑
i=1

φh
(
Yi −XT

i βn −ΨT
i γn

)
, (2)

where φh (t) equals h−1φ (t/h), h is bandwidth which
plays the role of robust estimation, and φ (t) is a kern
density function.In order to calculate and discuss properties
conveniently, in this paper we use the normal kernel density

function, that is, φh (t) = 1√
2πh

e−
t2

2h2 .Consider the following
penalty function based on equation (1), we have

Pn (γn, βn) = Qh (γn, βn)− λ1kwk

pn∑
k=1

|βnk|ζ

− λ2lwl

dn∑
1=1

‖γnl‖H
ζ
,

(3)

where

‖γnl‖H =
√
γTnlHγnl, H =

∫
1
0ψlk (z)ψlk′ (z)dz,

λ1k and λ2l are tuning parameters more than 0.wk and wl
are the penalty weights for the k-th and l-th components,

respectively.We default wk =
∣∣∣β̃nk∣∣∣−r and wl = |γ̃nl|−r

generally, γ̃nl and β̃nk are non-penalty estimation of γnl and
βnl, respectively.0 < ζ < 1, the definition of the adoptive
bridge estimation is as follows:

θ̂n =
(
γ̂n, β̂n

)
= arg max

γ̂n,β̂n

{Pn (γn, βn)} . (4)

It is more difficult to maximize the objective function (2)
for a given tuning parameter λ1k and λ2l directly.Assuming

that the initial value θ̃n0 =
(
β̃n0, γ̃n0

)T
is very close to

the maximum value of the objective function (2), the initial
value is usually considered to be the non-penalty estimation
of equation (2). We use the local quadratic algorithm (LQA)
proposed by Fan [13] to approximate the penalty function. If
θ̃

(0)
n is very close to 0, let θ̃(0)

n = 0, otherwise

λ1kwk|βnk|ζ ≈ λ1kwk

∣∣∣β(0)
nk

∣∣∣ζ +
1

2

λ1kwkζ
∣∣β(0)

nk

∣∣ζ−1∣∣∣β(0)
nk

∣∣∣

(
|βnk|2 −

∣∣∣β(0)
nk

∣∣∣2) , (5)
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λ2lwl‖γnl‖H
ζ ≈ λ2lwl

∥∥∥γ(0)
nl

∥∥∥
H

ζ

+
1

2


λ2lwlζ

∥∥∥γ(0)
nl

∥∥∥
H

ζ−1

∥∥∥γ(0)
nl

∥∥∥
H


(
γT

nl
Hγnl − γ(0)

nl

T
Hγ(0)

nl

)
. (6)

Denote

G (x, z, h) = E
{
φ′h(ε)

2|X = x, Z = z
}
, F (x, z, h) = E {φ′′h (ε) |X = x, Z = z} ,

an = max
k,l
{λ1k, λ2l : k = 1, 2, · · · , s1; l = 1, 2, · · · , s2} , bn = min

k,l
{λ1k, λ2l : k = 1, 2, · · · , s1; l = 1, 2, · · · , s2} .

3. Asymptotic Properties of Variable
Selection

Let Hr represent the whole of function h (t) that satisfies
certain conditions in interval [0, 1], hm (t) is m-th derivative
of h(t), it is continuous and satisfies v-th order condition
of Hölder, r = m + v.That is, there is a constant value
M0 ∈ (0,∞) make |hm (s)− hm (t)| ≤ M0|s− t|v is true,
where s, t ∈ [0, 1].In order to prove the conclusion of the
theorem, the following regular conditions are needed in this
paper.

(B1) E (gl (Zl)) = 0 and gl (zl) ∈ Hr, l = 1, · · · , dn,
r > 1/2 .

(B2) Covariates Zl is a continuous density function
fzl (zl) , constants δ1 and δ2 enables fzl (zl) to satisfy 0 <
δ1 ≤ fzl (zl) ≤ δ2 <∞ on interval [0, 1].

(B3) Random variables Xik and the eigenvalues of
E
{
XiX

T
i

∣∣Zi} are uniformly bounded, where 1 ≤ i ≤ n,
1 ≤ k ≤ pn.

(B4) Let t1, · · · , tK be the interior knots of [0, 1].
Moreover, let t0 = 0, tK+1 = 1, ξi = ti − ti−1 and
ξ = max{ξi}.Then, there exists a constant C0 such that

ξ

min{ξi}
≤ C0, max{|ξi+1 − ξi|} = o(K−1).

(B5) Let F (x, z, h) and G(x, z, h) are continuous with
respect to (x, z).In addition, F (x, z, h) < 0, ∀h > 0.

(B6) E (φ′h (ε)|x, z) = 0, E
(
φ′′h (ε)

2
∣∣∣x, z),

E
(
φ′h(ε)

3
∣∣∣x, z) and E (φ′′′h (ε)|x, z) are continuous with

respect to (x, z).
(B7) λnwnsn

−1/2 → 0, where λn is λ1k or λ2l , ωn is
ω1k or ω2l and sn is s1 or s2.

(B8) For an and bn, there are
√
nan → 0 and

√
nbn →∞

where n→∞.
Remark 1 Conditions (B1)-(B3) are common conditions for

partially linear additive model; Condition (B4) indicates that
c0, · · · , cK+1 is a C0-quasi-uniform sequence of partitions
of [0, 1]; Conditions (B5)-(B6) are required for the modal
regression.Reference Yao[12] thought E (φ′h (ε)|x, z) =

0 guarantees the consistency of the estimation.If the
error distribution density is symmetrical about 0, these
conditions are automatically satisfied; Condition (B7) is an
indispensable condition for the adoptive bridge estimation of
convergence and oracle properties; Condition (B8) represents
the assumption of adoptive bridge estimation.

Now, we discuss the asymptotic properties of penalty
estimation β̂n and γ̂n.Let gl(0) (zl) and βn(0) be the real value
of gl (zl) and βn.Default βnk(0) = 0 can represent an unrelated
variable, where k = s1 + 1, · · · , pn, βnk(0) 6= 0 can represent
a function corresponding to an important variables where k =
1, 2, · · · s1.Similarly, we have gl(0) (zl) = 0 and gl(0) (zl) 6= 0
where l = s2 + 1, · · · , dn and l = 1, 2, · · · s2, respectively.

First, we give the consistency of the penalty estimations.
Theorem 1 Suppose that the regular conditions (B1)-(B6)

hold, the number of knots K = O(n1/(2r+1)), 0 < ζ < 1,
then we have

(i)
∥∥∥β̂nk − βnk(0)

∥∥∥ = Op
(
n−r/2r+1 + an

)
,

(ii)
∥∥ĝl (zl)− gl(0) (zl)

∥∥ = Op
(
n−r/2r+1 + an

)
.

Next, we can obtain the sparsity of the penalty estimation
under certain conditions.

Theorem 2 Suppose that the regular conditions (B1)-(B6)
hold, 0 < ζ < 1, then we have

(i) β̂nk = 0, k = s1 + 1, · · · , pn,
(ii) ĝl = 0, l = s2 + 1, · · · , dn.
Denote

βn1 =
(
βT

n1
, · · · , βT

ns1

)T
, γn1 =

(
γT

n1
, · · · , γT

ns2

)T
,

and let βn1
(0) and γn1

(0) be the real true of βn1 and γn1

respectively. Their respective corresponding covariates are
labeled with X1 and Ψ1. In addition, define

Υ = E
(
φ′′h (ε) Ψ1ΨT

1

)
= E

(
F (x, z, h) Ψ1ΨT

1

)
,

Ω = E
(
φ′′h (ε) Ψ1X

T
1

)
= E

(
F (x, z, h) Ψ1X

T
1

)
.

Finally, we give the asymptotic normality of the non-zero
components in parameters.

Theorem 3 Under the conditions of Theorem 2 and (B1)-(B8), we have

√
n
(
β̂n1 − βn1

(0)
)
D→N

(
0,
∑−1

Γ
∑−1

)
,
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where Γ is E
(
G (X,Z, h)

^

X1

^

X
T

1

)
, Σ is E

(
F (X,Z, h)

^

X1

^

X
T

1

)
and

^

X1 is X1 − ΩTΥ−1Ψ1.

4. Estimation Algorithm and Parameter Selection
4.1. Estimation Algorithm

The following is the algorithm which has combined EM algorithm with LQA algorithm, it is suitable for this paper.Assume
that the previous estimations are γ̂(m)

nl and β̂(m)
nk respectively, where l = 1, 2, · · · , pn and k = 1, 2, · · · dn.If they are very close to

0, then let γ̂(m+1)
nj

= 0 and β̂(m+1)
nk

= 0; otherwise, iterative estimation is performed according to the following algorithm steps.
Denote

ZTi =
(
XT
i ,Ψ

T
i

)T
, θn = (βn, γn)

T

and let

Σλ1,λ2

(
θ(m)
n

)
= diag

{
λ11w1ζ

∥∥∥γ(0)
n1

∥∥∥
H

ζ−1

H, · · · , λ1dnwdnζ
∥∥∥γ(0)

ndn

∥∥∥
H

ζ−1

H,λ21w1ζ
∣∣∣βn1(0)∣∣∣ζ−1

, · · · , λ2pnwpnζ
∣∣∣βnpn (0)

∣∣∣ζ−1
}
.

Based on the EM algorithm, we can obtain the penalty
estimation of (3) as follows:

Step 1(E-step): First, the non-penalty estimation in (3) is the

initial value θ̃(0)
n

=
(
β̃(0)

n
, γ̃(0)

n

)T
and the termination error,

0 < ε < 10−6.Then let m = 0 and update π
(
i
∣∣∣θn(m)

)
by

π
(
i
∣∣∣θn(m)

)
∝

n∑
i=1

φh

(
Yi − ZiT θn(m)

)
,

where

θ̃(0)
n = arg max

θ
nΣni=1{π(i|θ(m)

n )logφh(Yi − Z∗i
T θ(m)

n )}

=
(
Z∗Ti DZ∗i

)−1
Z∗Ti DYi,

D is a diagonal matrix of n × n whose elements of the i-th
diagonal are π

(
i
∣∣∣θn(m)

)
.

Due to

θ̃(0)
n = arg max

θ
nΣni=1{π(i|θ(m)

n )logφh(Yi − Z∗i
T θ(m)

n )},

and

φh (t) =
1√
2πh

e−
t2

2h2 .

By calculating the logarithmic function, we have the target
function

Q = Σni=1{π(i|θ(m)
n )(Yi − Z∗i

T θ(m)
n )2},

Next, we maximize the target function by calculating partial
derivatives, we have

θ̃(0)
n = arg max

θ
nΣni=1{π(i|θ(m)

n )logφh(Yi − Z∗i
T θ(m)

n )}

=
(
Z∗Ti DZ∗i

)−1
Z∗Ti DYi.

Step 2(M-step): Update θ̂(m)
n by

θ̂(m+1)
n = arg max

n∑
i=1

{
π
(
i
∣∣∣θ(m)
n

)
log φh

(
Yi − ZTi θ(m)

n

)}
+
n

2
θ(m)
n

T∑
λ1,λ2

(
θ(m)
n

)
θ(m)
n

≈
(
ZTi DZi + n

∑
λ1,λ2

(
θ(m)
n

))−1

ZTi DYi.

Step 3: Repeat Step 1 and Step 2 continuously until the
algorithms are convergent and the final estimation θ̂n =(
β̂n, γ̂n

)
, where β̂n = (Ipn×pn , 0pn×dnq) θ̂n and γ̂n =

(0dnq×pn , Idnq×dnq) θ̂n is obtained.

4.2. The Selection of Bandwidth, Node and Tuning
Parameter4.2.1. Bandwidth Selection

In order to select the bandwidth handily, we assume that
X and Z are independent of each other.On the basis of the
asymptotic variance obtained by Theorem 3 and the variance
of the Least square B-spline estimation proposed by Zhao [14],
we can get the ratio of two asymptotic variances as

r(h) =
G (h)F−2 (h)

σ2
,

where

σ2 = E
(
ε2
)
, G (h) = E{φ′h (ε)}2, F (h) = E {φ′′h (ε)} .

Define the optimal bandwidth as follows:

hopt = argminh r(h) = argmin G(H)F−2(H). (7)

In practical application, since the distribution of errors are
unknown, the bandwidth obtained by equation (5) cannot be
used directly.A feasible method is to estimate F (h) and G(h)



International Journal of Statistical Distributions and Applications 2020; 6(1): 1-9 5

by

F̂ (h) =
1

n

n∑
i=1

φ′′h(ε̂i), Ĝ(h) =
1

n

n∑
i=1

{φ′′h(ε̂i)}2. (8)

Then we can obtain the estimation of r(h) by

r̂(h) = Ĝ(h)F̂−2(h)/σ̂2,

where

ε̂i = Yi −XT
i β̂n −

dn∑
l=1

ĝl (zl),

ĝl (zl) and β̂n are initial estimations based on the robust
method.

In practical, after getting the estimation of r(h), we use the
lattice point search method to obtain the hopt.According to
the suggestion in reference by Yao [12], some of the possible
lattice shops can be taken as hopt = 0.5σ̂ × 1.02j , where
j = 0, 1, · · · , k, k is 50 or 100.

4.2.2. The Selection of Node K and Tuning Parameter

In order to implement the estimation algorithm handily, it is
necessary to select the appropriate number of internal nodesK
and the tuning parameters λ1k and λ2l in the adoptive bridge
penalty estimation. Denote

λ1k =
λ∣∣∣β̃nk∣∣∣ , λ2l =

λ

‖γ̃nl‖
(9)

where γ̃nl and β̃nk are non-penalty estimations of γnl and βnk
respectively. λ and K are selected by CV criterion:

CV (K,λ) =

n∑
i=1

φh

[
Yi −ΨT

i γ̂
(−i)
n
−XT

i β̂
(−i)
n

]
, (10)

where γ̂(−i)
n and β̂

(−i)
n are penalty estimations obtained by

excepting the i-th data from equation (4).The optimal node
Kopt and tuning parameter λopt are obtained by

(Kopt, λopt) = max
K,λ

CV (K,λ) . (11)

5. Numerical Simulations

We simulate data from model (1), where gl (zl) are the dn-
dimensional vectors, g1 (Zi1) = 2Zi1 − E (2Zi1), g2 (Zi2) =

(3Zi2 − 1)
2−E ((3Zi2 − 1)) and g3 (Zi3) = 4 sin (4πZi3)−

E (4 sin (4πZi3)), the rest of gl (zl) are zero; βn is pn-
dimensional vector, β1 = 1.8 , β2 = 1, β3 = 0.5, β4 = −0.8,
β5 = −0.3, the rest of βn are zero.In this paper, both pn
and dn increase as the sample size n increases gradually, so
we assume pn = dn.To perform this simulation, we take

the covariates X ∼ N(0, 1) and Z ∼ U(0, 1).The model
error εi is subject to the three cases of N(0, 1), t(4) and
0.25N(0, 6) + 0.75N(0, 1) respectively.The simulated sample
size n is taken as 100, 200 and 400 respectively.And the
corresponding pn is taken as 10, 20 and 40.Repeat 400 times
for each simulation and calculate its average.We use a third
order B-spline basic function to approximate the function of
the variable coefficient part in the simulation, and optimal node
and tuning parameters are selected by CV method.In order
to test the effect of variable selection under high-dimensional
data, we also calculate the penalty estimations through LASSO
and adoptive bridge estimation based on the modal regression
in this paper.We consider the cases of ζ = 0.6 and ζ = 0.85 in
the adoptive bridge estimation.

To illustrate the proposed method in this paper, the efficient
estimations ĝl (zl) will be assessed by using the square root of
average square errors (RASE)

RASE =

{
n−1

grid∑
l=1

‖ĝl (zl)− gl (zl)‖2
}1/2

.

The generalized mean square error (GMSE) is
used to evaluate the performance of β̂n GMSE =(
β̂k − βk

)
E
(
XXT

) (
β̂k − βk

)
.CN and CP are used to

represent the number of important variables for correctly
estimating additive coefficients and parameters respectively.

It can be seen from Table (1) that when the error obeys
standard normal distribution, t-distribution or mixed normal
distribution, the values of MRSE and GMSE under adoptive
bridge estimation method are generally smaller than those
under LASSO.This conclusion is still true when the sample
size and dimension are getting larger, and as the dimension
and sample size increase, the estimation accuracy of the model
also increases.If the dimension and sample size are fixed, the
values of RASE and GMSE when the error obeys the normal
distribution are smaller than those when the error obeys t-
distribution, which indicates that the simulation effect is better
under the normal distribution.

6. Proof of Theorems

Proof of Theorem 1 Let δ=n−r/2r+1 + an and v =(
vT1 , v

T
2

)T
, where vT1 is a pn-dimensional vector, vT2 is a dn-

dimensional vector.Denote βn=βn
(0) + δv1 and γn = γn

(0) +
δv2.For part (i), we first prove for any given vT1 and vT2 , there
exists

Pr
{

supPn (γn, βn)− Pn
(
γn

(0), βn
(0)
)
> 0
}
→ 1,

n→∞. (12)

Define
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Π (γn, βn) =
1

K

{
Pn (γn, βn)− P

(
γn

(0), βn
(0)
)}

=− −δ
K

n∑
i=1

φ′h
(
εi + 1TdnR (Zi)

) (
XT
i v1 + ΨT

i v2

)
+
δ2

K

n∑
i=1

φ′′h
(
εi + 1TdnR (Zi)

) (
XT
i v1 + ΨT

i v2

)2
+
δ3

K

n∑
i=1

φ′′h
(
ε∗
i

) (
XT
i v1 + ΨT

i v2

)3
+
n

K
λ1lwl

dn∑
l=1

{
‖γnl‖ζH −

∥∥∥γnl(0)
∥∥∥ζ
H

}
+
n

K
λ2kwk

pn∑
k=1

{
|βnk|ζ −

∣∣∣βnk(0)
∣∣∣ζ}

∆
=In1 + In2 + In3 + In4 + In5,

where ε∗i is between εi+1TdnR (Zi) and εi+1T
dn
R (Zi)−δ

(
XT
i v1 + ΨT

i v2

)
, and we denoteR (U) = (R1 (U) , · · · , Rdn (U))

T ,
Rl (Z) = g0l (Z) − ψlT γ0l and l = 1, 2, · · · , dn. According to the regular conditions (B1) and (B2) and the conclusions in
Schumaker [15], there exists ‖Rl (Zi)‖ = O (K−r).We get E

(
φh
′ (εi) |x, z, u

)
= 0 by expanding In1 by Taylor formula and

regular conditions (B4) and (B6).By simple calculation, we get

In1 = −K−1δ

n∑
i=1

φ′h
(
εi + 1TdnR (Zi)

) (
XT
i v1 + ΨT

i v2

)
= Op

(
nK−r

)
‖v‖ .

Similarly, we get In1 = op (In2) and In3 = op (In2). For In5, by using the inequality Hölder, we get

|In5| ≤ C2λ2wkζpn
−1

(
pn∑
k=1

pn
2

)1/2 ( pn∑
k=1

(
βnk − βnk(0)

)2
)1/2

, k = 1, 2, · · · , s2.

According to the regular condition (B7) we have |In5| ≤ C2λ2wkζpn
−1/2 δ ‖v‖ → 0.That is, In5 is consistently controlled

by In2. Similarly, In4 is consistently controlled by In2.
In summary, according to the regular condition (B5) F (x, z, h) < 0, so if we select a sufficiently large C and a vector of ‖v‖

that can satisfy the condition, Πn (γn, βn) < 0, which means

Pr
{

supPn (γn, βn)− Pn
(
γn

(0), βn
(0)
)
> 0
}
→ 1.

Thus, there is a local maximum point that satisfies
∥∥∥β̂nk − βnk(0)

∥∥∥ = Op
(
n−r/2r+1 + an

)
. That is, part (i) is proven. We

use the similar method in reference [12] to complete the second part of the proof.
Proof of Theorem 2 First, we prove part (i).According to the conclusion of Theorem 1, for any given sufficiently small v =

Cn−r/(2r+1), when n → ∞, for any γnj that satisfies ||γnl − γ
(0)
nl || = OP (n

−r
2r+1 ) and βnk that satisfies ||βnk − β

(0)
nk || =

OP (n
−r

2r+1 ), k = 1, · · · , s1, with probability tending to 1, we have

∂Pn (γn, βnk)

∂βnk
< 0, if 0 < βnk < v,where k = s1 + 1, s1 + 2, · · · ,pn, (13)

∂Pn (γn, βnk)

∂βnk
> 0, if − v < βnk < 0,where k = s1 + 1, s1 + 2, · · · ,pn. (14)

Similar to the proof of Theorem 1, we get

∂Pn (γnl, βnk)

∂βnk
= −nλ2kζ

[
|βnk|ζ−1

sgn (βnk) +Op

(
n−1λ2k

−1ζ−1n
−r

2r+1

)]
.

By the regular conditions (B3), (B7) and (B8), with probability tending to 1, we have λ2kn
−r/2r+1 ≥ bnn

−r/2r+1 → ∞
where k = s1 + 1, · · · , pn. Therefore, the sign of ∂Pn(γn, βnk)/∂βnk is completely determined by the sign of βnk, that is, the
equations of (15) and (16) are established.
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For the proof of part (ii), using a method similar to the above, with probability to 1 we have ĝnl (zl) = 0, where l =
s2 + 1, · · · , dn, that is, the conclusion of part (ii) is established.

Proof of Theorem 3 From the proof of Theorem 1 and Theorem 2, we know that Pn(γn, βn) attains the maximal value at
(β̂Tn1, 0)T and (γ̂Tn1, 0)T with probability tending to 1 when n→∞. Denote

Pn1 (γn, βn) =
∂Pn1 (γn, βn)

∂βn1
then

(
β̂T

n1
, 0
)T

must satisfy the following equation

1

n
Pn1

((
γ̂T

n1
, 0
)T
,
(
β̂T

n1
, 0
)T)

=
1

n

n∑
i=1

Xiaφ
′
h

(
Yi −ΨT

i γ̂nl −XT
i β̂nk

)
− λ2kwkζ

pn∑
k=1

∣∣∣β̂nk∣∣∣ζ−1

sgn
(
β̂nk

)
= 0.

(15)

Expanding the second term below the equation (17) by Taylor formula, we have

n−1
n∑
i=1

Zi1

{
φ′h (εi) + φ′′h (εi)

[
XT
i R
∗ (Ui)− ZTi1

(
β̂n1 − βn1

(0)
)
−WT

i1

(
γ̂n1 − γn1

(0)
)]

+φ′′′h (ςi)
[
XT
i R
∗ (Ui)− ZTi1

(
β̂n1 − βn1

(0)
)
−WT

i1

(
γ̂n1 − γn1

(0)
)]2}

+ op

(
β̂n1 − βn1

(0)
)

= 0.

(16)

where ςi is between εi and Yi − ΨT
i1γ̂n1 − XT

i1β̂n1, R∗ (u) = (R1 (u) , · · · , Rs1 (u))
T . According to the regular conditions

√
nbn →∞ and

(
β̂nk − βnk(0)

)
= op (1), we obtain

γ̂n1 − γn1
(0) = (Υn + op (1))

−1
{
−Ωn

(
β̂n1 − βn1

(0)
)

+ Tn

}
. (17)

where

Tn = n−1
n∑
i=1

Wi1

[
φ′h (εi) + φ′′h (εi)X

T
i1R
∗ (Ui)

]
.

Substituting into equation (16), we obtain

E

(
n−1

n∑
i=1

φ′′h (εi) ΩTΥ−1Ψi1

[
XT
i1 −ΨT

i1Υ−1ΩT
])

= 0.

After calculations, we have{
n−1

n∑
i=1

φ′′h (εi)
^

Zi1
^

Z
T

i1 + op (1)

}
√
n
(
β̂n1 − βn10

)
= n−1/2

n∑
i=1

^

Zi1φ
′
h (εi) +n−1/2

n∑
i=1

^

Zi1φ
′′
h (εi)X

T
i R
∗ (Ui)− n−1/2

n∑
i=1

^

Zi1φ
′′
h (εi)

(
Υ−1 + op (1)

)
Tn

= Jn1 + Jn2 + Jn3,

where
^

Xi1 = Xi1 − Ωn
TΥn

−1Ti.According to the definition of R∗ (Ui), for Jn2, we have

Jn2 = n−1/2
n∑
i=1

φ′′h (εi)
(
ZTi − E(Ωn)

T
E(Υn)

−1
Wi1

)
XT
i1R
∗ (Ui)

+n−1/2
n∑
i=1

φ′′h (εi)E(Ωn)
T
(
E(Υn)

−1 − Ωn
TΥn

−1Wi1

)
XT
i R
∗ (Ui)

= Jn21 + Jn22.

Since E
(
φ′′h (εi)

{
Xi

T − E(Ωn)
T
[
(Υn)

−1
Ψi1

T
]

Ψi1

})
= 0, we have

n−1/2
n∑
i=1

φ′′h (εi)
(
Xi

T − E(Ωn)
T
E (Υn)

−1
Ψi1

T
)

Ψi1 = op (1) .
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Combining Wi =
(
Wi1

T ,Wi2
T , · · · ,Wipn

T
)

and
|R∗ (Ui)| = op (1) , we get Jn21 = op (1).Similarly, Jn22 =
op (1).

Further, according to the regular conditions, we have

n−1
n∑
i=1

φ′′h (εi)
^

Xi1

^

X
T

i1
P−→ Σ.According to the Central limit

theorem, there is

Jn1 = n−1/2
n∑
i=1

φ′h (εi)
^

Xi1

T
d−→ N (0,Γ) . (18)

where Γ = E

(
G (x, z, h)

^

Xi1

^

X
T

i1

)
.

For any vectors ρ whose components are not all zero,

ρTPn1 = n−1/2
n∑
i=1

ρTφ′h (εi)
^

Xi1

T

,
n∑
i=1

oiξi.

where oi
2 = n−1

n∑
i=1

G (X,Z, h) ρT
^

Xi1

^

Xi1

T

ρ.Under the

given conditions of {Xi, Zi}, ξi is independent with mean zero
and variance one.

Then, we verify Linderberg’s central limit theorem.If

max oi
2∑n

i=1 oi
2

P−→ 0, (19)

holds, then ∑n

i=1
oiξi/

√∑n

i=1
oi2

D−→ N (0, 1)

and thus the equation (18) holds.

Next, we prove (19). Owing to
(
ρT

^

Z
T

i1

)2

≤ ‖ρ‖2
∥∥∥^

Zi1

∥∥∥2

,

we have oi2 ≤ n−1G (X,Z,U, h) ‖ρ‖2
∥∥∥^

Zi1

∥∥∥2

and
∥∥∥^

Zi1

∥∥∥ =∥∥Zi1 − ΩTΥ−1Wi1

∥∥ ≤ ‖Zi1‖ +
∥∥ΩTΥ−1Wi1

∥∥ . According
to the regular conditions, we have maxi ‖Zi‖n−1/2 = op (1)
and maxi

∥∥ΩTΥ−1Wi

∥∥ = op (1). By applying Slutsky
theorem again, then we can prove that equation (18) is true.

In conclusion, we obtain
√
n
(
β̂n1 − βn1

(0)
)

D−→ N
(
0,Σ−1ΓΣ−1

)
.

7. Conclusion
Combining the results of the above theoretical proof

and numerical simulations, we can get the following
conclusions.It is proved by theoretical properties that adoptive
bridge estimation can accurately screen non-zero parameters
with probability tending to 1 under high-dimensional
data.Numerical simulations tested the performance of the
proposed methods in a finite sample and verified the
significance of modal regression estimation and the variable
selection methods.
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