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Abstract: The aim of this study was to employ Maximum Likelihood (MLE) jointly with a numerical Method (Newton 

Raphson method) to obtain parameter estimates from the two-parameter Gamma model. The profile likelihood of the two-

parameter Gamma model was also put into consideration. The methods were demonstrated using simulation studies and real 

life data considering data sets generated by R statistical software for different sample sizes. Standard errors were computed and 

5 % Wald-confidence interval was constructed for the estimates of the model. The result of the study shows that Maximum 

Likelihood Estimation (MLE) jointly with Newton Raphson method was more efficient for estimating parameters of the 

Gamma model in simulation study than real life data. The study recommends that parameter estimates from the two-parameter 

Gamma model should be obtained by employing Maximum Likelihood Estimation jointly with Newton Raphson Method. 

Keywords: Parameter Estimation, Two-Parameter Gamma Model, Profile Likelihood, Maximum Likelihood Estimation, 

Newton Raphson Method 

 

1. Introduction 

The two-parameter gamma probability distribution has 

found much application in technology and natural sciences, 

more especially in the areas of failure and survival analysis. 

The estimation of the parameters of the two-parameter 

gamma distribution is of great importance and it has been 

discussed widely. The maximum likelihood (MLE) is the 

most commonly used method of parameter estimation due its 

efficiency and good theoretical properties, and its ease 

application which gives explicit algebraic estimates of a 

probability distribution. However, in some cases, the MLE is 

ineffective in terms of statistical or computation properties, in 

particular for Gamma Probability distribution. The maximum 

likelihood (MLE) does not provide explicit estimates of 

unknown parameters in Gamma model and require the 

application of other numerical methods. Therefore, other 

methods which have been proposed in the literature as an 

alternative to the MLE method include; the secant, the 

bisection and the Newton-Raphson Methods. However, in 

both the secant and the bisection methods, the process 

converges slowly. The Newton-Raphson method on the other 

hand computes both the basic estimating function and its 

derivative at each iterative step and it converges very fast. 

Furthermore, the MLE-based methods require either initial 

values or trial computation for the estimation of the 

parameters. In this study, MLE was used jointly with the 

Newton Raphson method which has the ability to find 

solutions where no closed form exist, ease of application and 

faster rate of convergence for the estimation of the 

parameters of two-parameter Gamma model using simulation 

studies and real life data.  

2. Review of Related Literature 

The likelihood function tells us how likely the observed 

sample is a function of the possible parameter values. Thus, 

maximizing the likelihood function for the data gives the 

parameter values for which the observed sample is most 

likely to have been generated, that is, the parameter values 
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that “agree most closely’’ with the observed data 

(Fisher,1920).Modern applied statistics deals with many 

settings in which the point wise evaluation of the likelihood 

function is impossible or computationally difficult there by 

making it difficult to perform any inference (classical or 

Bayesian) about the parameters of the model. Areas such as 

financial modelling, genetics, geostatistics, neurophysiology 

and stochastic dynamical systems provides numerous 

example of this (Pritchard et al., 1999).Various approaches to 

overcome the shortcomings of MLE has been proposed by 

several researchers; Cox and Reid (2004) used Composite 

Likelihood methods for approximating the likelihood 

function, also Pritchard et al., 1999 and Beaumont et al., 

2002, applied the Approximate Bayesian Computational 

methods for approximating the posterior distribution to 

obtain the estimates of parameters. It is well-known that 

ABC produces a sample approximation of the posterior 

distribution in which there exist a deterministic 

approximation error in addition to Monte Carlo variability 

(Beaumont et al., 2002). The posterior and theoretical 

properties of the estimators when the ABC methods is 

applied and its use in model comparison have been studied 

and presented in many works (Wilkinson, 2008; Didelot et 

al., 2011; Robert et al., 2011; Marin et al., 2011; Dean et al., 

2011; Fearnhead and Prangle, 2012).Using the sample 

approximation to characterize the mode of the posterior 

would in principle allow (approximate) maximum a 

posteriori (MAP) estimation. Furthermore, using a uniform 

prior distribution, under the parameters of interest over any 

set which contains the MLE will lead to a MAP estimate 

which coincides with the MLE. In low-dimensional problems 

if we have a sample from the posterior distribution of the 

parameters, we can estimate its mode by using either 

nonparametric estimators of the density or another mode 

seeking technique such as the mean-shift algorithm 

(Fukunaga and Hostetler, 1975). Although Marjoram et al., 

(2003) noted that (ABC) can also be used in frequentist 

applications, more especially in for maximum-likelihood 

estimation; this approach did not receive much attention. 

Alternative nonparametric density estimators which could 

also be considered within the AMLE context have been 

proposed recently (Culeet al., 2010; Jing et al., 2012). Cheng 

and Amin (1983) suggested the maximum product of spacing 

(MPS) method which can be applied to any univariate 

distribution. Cheng and Traylor (1995) pointed out the 

drawbacks of the MPS method owing to the occurrence of 

tied observations and numerical effects involved in ordering 

the cumulative density function when there are explanatory 

variables in the model. Atkinson and Pericchiet al., (1991) 

applied the grouped-data likelihood approach to the shifted 

power transformation model of Box and Cox (1964).  

3. The Gamma Probability Distribution 

In probability theory and statistics, Gamma distribution is 

a member of two-parameter family of continuous probability 

distributions. It has a scale parameter α and a shape 

parameter λ. If α is an integer then the distribution represents 

the sum of α independent exponentially distributed random 

variables, each of which has a mean of λ (which is equivalent 

to a rate parameter of λ−1). The gamma distribution is 

frequently a probability model for waiting times; for 

instance, in life testing, the waiting time until death is a 

random variable that is frequently modeled with a gamma 

distribution.  

3.1. Materials and Methods 

The study employed MLE jointly with Numerical method 

(Newton-Raphson method) to obtain the estimates, profile-

likelihood, standard errors and Wald interval of the two-

parameter Gamma model using simulation studies and real 

life data which was implemented using R Statistical software. 

3.2. The Maximum Likelihood Estimation Method 

The maximum likelihood estimation method had been 

used in special cases by Gauss in 1812 but a full description 

of properties and a presentation of its application were 

performed 100 years later by Ronald Fisher [1]. Nowadays, 

the maximum likelihood method is the most popular 

estimation technique, mainly for its good theoretical 

properties. See other literature [7, 14, 17, 19] for the 

existence and the uniqueness of the maximum likelihood 

estimates for discussed distributions. The idea of the 

maximum likelihood method is based on the assumption that 

observed data are the most likely outcome of a random 

experiment in respect to the considered probability 

distribution. In the discussed method, the key role plays the 

likelihood function specified as the probability of observed 

data depending on the values of distribution parameters.  

Table 1. Gamma Probability Distribution Mass Function. 

Distribution ���,�, �� 

Gamma 	
��. ���
�

	����. �
 , 	 ≥ 0, � > 0, � > 0 

In the above expressions � and � denotes the scale of the 

shape distribution parameters  

Table 2. Gamma Probability Distribution Likelihood Function L. 

Distribution ���, �, ��, … , ��� 

Gamma 
1

����. �� ��	 
� !


��
.

�

 "�
��∑ �$�

%$&'  

The maximum likelihood estimators of the distribution 

parameters are found by maximizing the likelihood functions 

L (actually it logarithms) with respect to parameter values. 

Maximum likelihood estimates of the shapes and scale 

parameters for the Gamma distribution is therefore the 

solution of equations which are obtained by equating partial 

derivatives of In(L) to zero presented in Table 3 
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Table 3. Gamma Distribution Maximum Likelihood Estimates. 

Distribution ML Eestimates 

Gamma 	̅=�) . *∏ 	 . �	, -. /01
) 2
/1
) 23� "�

% , �4=�̅

 

The discussed problems have no explicit algebraic 

solutions; therefore numerical calculations are required in the 

real life data and simulation studies for the Maximum 

likelihood estimates using Newton-Raphson’s method. 

4.1. Numerical Method (Simulation Study) Gamma Model 

Table 4. Gamma Model Result. 

N 56789 �)789 S.E�56� S.E��)� Wald C.I for 56 Wald C.I for �) 

10 2.728430 9.921558 1.154090 4.607174 1.574339,7.335604 8.767467,14.528732 
100 2.728430 9.921558 0.3649554 1.4569164 2.363474,4.185346 9.556602,11.2784474 

1000 2.728428 9.921553 0.1154090 0.4607172 2.3613019,1.89145 9.806144,10.382270 

10000 2.728428 9.921553 0.03649552 0.14569157 2.691933,2.874120 9.885058,10.067245 

 

 

Figure 1. Loglikelihood graph of a Gamma Model. 

4.2. Profile Likelihood of Gamma Distribution 

Table 5. Profile Log - Likelihood of a Gamma Model Result Table. 

N �)789 S.E��)� Wald C.I for�) 

10 9.921523 0.7082003 2.463034,3.633315 
100 9.921535 0.2237425 4.628043,5.075528 

1000 9.921536 0.07187667 4.954930,5.098683 

10000 9.921537 0.02275701 5.017715,5.063229 

 

Figure 2. Profile Log-likelihood graph of a Gamma model. 

4.3. The Numerical Method (Real Life Data) Gamma Model 

Table 6. Gamma Model Result Table. 

∝6 789 ;. <�∝6� Wald CI �)789 ;. <��)� Wald CI 

0.851554121 0.1141584591 0.7373957, 008518967 0.001817164 0.0003426042 -0.112341295, 0.002159768 

 

 

Figure 3. Loglikelihood graph of a Gamma Model. 

4.4. Profile Likelihood of Gamma Model 

Table 7. Profile Likelihood of Gamma Model Result Table. 

∝6 789 ;. <�∝6� Wald CI 

1.9484034 0.01655228 1.967482,2.000587 

 

Figure 4. Profile Log-likelihood graph of a Gamma model. 
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4.5. Discussion 

By applying the Newton Raphson Method using 

simulation study, a total of 19 iterations were performed to 

obtain the maximum likelihood estimates of Gamma model. 

Convergence was achieved at the 17
th

 returning 509.3494 as 

the value of the log-likelihood and the values of the estimate 

which maximizes the function was 2.188828 and 7.959372 

with gradient −1.080348 × 10
−5

 and −6.056159 × 10
−6

. The 

values of the hessian matrix were 

= > 945.422 −125.63178
−125.63178 34.5435 G  which is the second 

derivative. 

Table 4 shows the estimates which maximizes the 

likelihood function of Gamma probability distribution for 

different sizes which ranges between (2.728430 and 

2.728428) and (9.921558 and 9.9221553) with standard error 

reducing as the sample size increases (1.15490 to 

0.03649552) and (4.607174 to 0.14569157).  

By applying the Newton Raphson method to get the 

Maximum likelihood estimates for the profile Gamma model 

likelihood function, a total of 10 iterations were performed to 

get the maximum likelihood estimate. Convergence was 

reached at the 10
th

 returning -50.76524 as the value of the 

log-likelihood and the value of the estimate which maximizes 

the function was 2.728441 with gradient −11.1625181 × 10
−5

. 

The variance was 2.515193 which is the second derivative. 

Table 5 shows the estimate which maximizes the 

likelihood function of profile Gamma likelihood function for 

different sizes which is between (4.8621 and 5.040472) with 

standard error reducing as the sample size increases 

(0.7082003 to 0.02275701) whereas in the case of real life 

data the iterations generated by applying Newton Raphson 

Method in obtaining maximum likelihood estimates for the 

Gamma model indicates a total of 31 iterations were 

performed to get the maximum likelihood estimates. 

Convergence was achieved at the 29
th

 returning 642.6958 as 

the value of the log-likelihood and the value of the estimate 

which maximizes the function was 0.850994171 and 

0.001815127 with gradient 1.59319 × 10−3 and 4.028254 × 

10
−6

. The entries of the Hessian matrix were 

= > 188.0602 −125.63178
−48212.9634 20879859.92G  which the second 

derivative is.  

Table 6 shows the estimates which maximizes the 

likelihood function of Gamma probability distribution 

(0.851554121 and 0.001817164) with standard error of 

(0.1141584591 and 0.0003426042). Similarly, by applying 

the Newton Raphson method to get the Maximum likelihood 

estimates for the profile Gamma model likelihood function, a 

total of 9 iterations were performed. Convergence was 

reached at the 8
th

 returning -5487.088 as the value of the log-

likelihood and the value of the estimate which maximizes the 

function was 1.984034 with gradient 8.067959 × 10
−05

. The 

variance was 3649.93 which was the second derivative. Table 

7 shows the estimate which maximizes the likelihood 

function of profile Gamma likelihood function was 

(1.984034) with standard error of (0.001655228). 

5. Conclusion 

Parameter estimates from the Gamma model can easily be 

obtained by the method of Maximum Likelihood Estimation 

jointly numerical approach (Newton Raphson method) with 

the help of computer. The result of the study shows that 

Maximum Likelihood Estimation (MLE) jointly with Newton 

Raphson method is more efficient for estimating parameters 

of the Gamma model on real life data than simulation study. 

Comparing Tables 4 and 5 it can be concluded that the 

estimate values of α that maximizes Gamma model and 

profile likelihood Gamma function are close to one another. 

Similarly, Comparing Tables 6 and 7 it can be concluded that 

the estimate values of α that maximizes gamma probability 

distribution and profile likelihood gamma are also not 

significantly different. It was observed that as the sizes of the 

sample increases the standard error reduces which obey the 

law of large numbers. 

Recommendation 

Based on the results drawn from this study; we 

recommend that the parameter estimates from the two-

parameter Gamma model should be obtained using 

Maximum Likelihood Estimation jointly with Newton 

Raphson Method. 
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