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Abstract: This paper focuses on the Asymptotic Classification Procedures in Two Group Discriminate Analysis with 

Multivariate Binary Variables. Two data patterns were simulated using the R-Software Statistical Analysis System 2.15.3 and 

was subjected to two linear classification namely; Location and Logistic Models. To judge the performance of these models, 

the apparent error rates for each procedure are obtained for different sample sizes. The results obtained show that the location 

model performed better than Logistic Discrimination with the variation in the error rates being higher for Logistic 

Discrimination rule.  
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1. Introduction 

Discrimination is a decision support tool with a wide range 

of applications, such as health applications, bankruptcy 

prediction, education planning, taxonomy problems, 

including engineering applications. It is a multivariate 

statistical classification technique for separating distinct sets 

of objects and allocating a new object to a previously defined 

group. In scientific literature, discriminant analysis has many 

synonyms such as classification, pattern recognition and 

character recognition, depending on the type of scientific 

area in which it is used. The technique usually proceeds in 

the following manner: a sample of objects is drawn from a 

population and partition of this sample is known. Each object 

within the population is described by several characters or 

certain measurements, which together form a feature vector 

belonging to a suitable feature space. Using the feature 

vectors and the individual labels of the sample, an allocation 

rule is established in order to classify other non-labeled 

objects from the previous population. The technique of 

discriminant analysis, though fairly old, still reflects 

inference in its applications. In attempting to choose an 

appropriate analytical technique, we sometimes encounter a 

problem that involves a categorical dependent variable and 

several metric independent variables. If the dependent 

variable is metric, the undoubtedly multiple regression could 

be employed. A statistical technique that addresses the 

situation of a non-metric dependent variable is discriminant 

analysis. In this type of situation the researcher is interested 

in the predication and explanation of the relationship that 

affect the category in which an object is located, such as why 

a person is or is not a customer or if a firm will succeed or 

fail. The subject discriminant analysis has been well dealt 

with over the years. The review in the areas of logistic 

discrimination and the location model has been fairly 

presented in Krzanowski [1]. Some comparative studies on 

the location and logistic models have also been carried out 

with stringent data characteristics. The relative efficiency of 

these two statistical methods under different data conditions, 

however, has been an issue of debate (e.g Baron, [2], Dey & 

Austin, [3], Baah, [4]. A logical question is, how do the two 

techniques compare with each other? Research findings 

about the relative performance of the two methods appear to 

be inconsistent. 

The basic assumption of Discriminant Analysis is that of 

normality. If the populations under study are normally 
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distributed with homogeneity of covariance, a linear 

discriminant function is used. A quadratic discriminant 

function is used if the covariances are not homogenous. The 

studies of Fan and Wang [5] and Lei and Koehly [6] made 

use of the assumption of normality. They considered the case 

of equal covariance and unequal covariance structures for the 

two groups.  

Kakai, Pelz, and Palm [10] did a Monte Carlo study to 

assess the relative efficiency of the linear classification rule 

in 2, 3 and 5-group discriminant analysis. The simulation 

design took into account the number p of variables (4, 6, 10 

and 18), the size sample n so that: n/p = 1.5, 2.5 and 5. Three 

values of the overlap, e of the populations were considered 

(0.05; 0.1; 0.15) and their common distribution was normal, 

chi-square with 12, 8 and 4 df; the heteroscedasticity degree, 

Γ was measured by the value of the power function of the 

homoscedasticity test related to Γ (0.05; 0.4; 0.6; 0.8). For 

each combination of these factors, the actual empirically 

computed error rate was used to calculate the relative error of 

the rule. The results showed that for normal or homoscedastic 

populations, the efficiency of the rule became better for large 

number of groups. Non-normality or heteroscedasticity 

negative impacted the performance of the rule whereas high 

values of the ratio n/p and high overlap have positive effect 

on the rule. The mean relative error of the rule became three 

times more important from homoscedastic to 

heteroscedasticity.  

Bull and Donner [16] looked at the asymptotic relative 

estimated efficiency (ARE) of multiple LD compared with 

multiple DA. Two cases were considered – strong 

correlations between populations and no correlation between 

populations. In the first case, LD exhibited substantial 

increase in the ARE, while the second case exhibited no 

substantial increase in the ARE. It was also found that as the 

distance between populations increase the discriminant 

procedure does relatively better, with the logistic procedure 

eventually producing infinite parameter estimates when there 

is no overlap between populations.  

Lei and Koehly, Egbo and Onyeagu, and Egbo [6, 8, 9], 

performed a Monte Carlo simulation to furnish information 

about the relative accuracy of Linear discriminant analysis 

and logistic discriminant under various commonly 

encountered and interacting conditions. The factors 

manipulated under multivariate normality are equality of 

covariance matrices, degree of group separation, sample size, 

and prior probabilities. They stated that the relative 

performance of the LDA and LD procedures depends on the 

interaction between model assumptions and population group 

distance. The degree of group separation was measured in 

terms of the squared Mahalanobis distance, ∆
2
 set at 2.68 

(small and 6.7 (large). They found that if total 

misclassification is of interest, the optimal cut-score is 0.5. 

With a cut score of 0.5, LD and LDA with proportional or 

accurate prior specification perform similarly and best among 

other LDA specifications examined in the study, providing 

good to excellent classification accuracy for extreme 

population priors or large ∆
2
. In general they observed that 

the misclassification rates were good for large ∆
2
.  

In a study of Krzanowski [11], five different sets of data 

were used to evaluate the performance of Location Model 

with Fisher’s LDF, LD and a method in which all the 

continuous variables were converted to binary ones. The 

sample sizes considered for the data sets are as follows: a 

total of 40 – 20 from πI and 20 from π2; 63 from πI and 30 

from π2; 38 from πI and 24 from π2; a total of 186 – 99 from 

πI and 87 from π2; and a total of 137 – 59 from πI and 78 

from π2; respectively for the data sets one to five. LM gave 

satisfactory results and in the situation with relatively large 

sample size, gave much better results.  

Efron [12] looked at the asymptotic relative efficiency of 

the normal discrimination procedure (LDA) and LD under 

multivariate normality, and found that this efficiency depends 

on ∆, the Mahalanobis distance between two normal 

populations, as well as on the number of individuals in each 

population. LD was shown to be between one-half and two-

thirds as effective as LDA for statistically interesting values 

of the parameters. He stated that the LD procedures must be 

less efficient than the LDA at least asymptotically, as n ---> 

∞. He further stated that though LD is less efficient and also 

more difficult to calculate, it is more robust, at least 

theoretically, than LDA.  

Kakai and Pelz [10] performed a Monte Carlo study to 

assess the asymptotic error rate of linear, quadratic and 

logistic rules in 2, 3 and 5-group discriminant analyses. The 

simulation design that was considered took into account the 

overlap of the populations (e = 0.05, 0.1, 0.15), their 

common distribution (Normal, Chi-square with 12, 8 and 4 

df) and their heteroscedasticity degree, Γ, measured by the 

value of the power function, 1 – βof the homoscedasticity test 

related to Γ (1 – β = 0.05, 0.4, 0.6, 0.8). For each 

combination of these factors, the asymptotic error of the 3 

rules was computed using large samples of size 20,000. The 

efficiency parameter of the rules was their relative error with 

regard to the optimal error rate. The results showed the 

overall best performance of the quadratic rule for the normal 

heteroscedastic cases. The linear rule seemed to be more 

robust to an increased number of groups than the two other 

rules. The logistic rule was less affected by the distribution of 

the populations. For small size samples, the three rules 

become less efficient.  

On the study of prior probabilities, Krzanowski [12] 

specified a range of values of p1 and p2 and 0.1 and 0.9 in a 

Monte Carlo simulation to compare LM to Fisher’s LDF. He 

also varied the number of binary variables q between 2 and 4. 

It was observed that for equal priors, the error rates were a 

constant for both models. However, the error rates were 

found to decrease as p2 increased.  

Also in a simulation study, Adebanji et al [13] looked at 

the effects of the sample size ratio on the performance of the 

linear discriminant function under non-optimal conditions, 

with 4 variables in each group. They observed thatratio 

combinations exceeding 1:2, the misclassification of 

observations for the smaller group were much higher, and 

four times much higher than the larger group when the ratio 
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exceeds 1:3. For increased disproportional representation of 

the sample groups, the performance of the classification rule 

deteriorates, and its performance could not be improved by 

asymptotic increase in sample size.  

The utility of an allocation rule can be assessed by the 

probabilities of misclassification or error rates, that it gives 

rise to. When parameters are known in the discriminant 

model the error rates are given by the optimum error rates, 

since they indicate the best results possible with the model. 

When parameters are unknown, various types of error rates 

may be distinguished. In particular, once an allocation rule 

has been derived in practice, it is essential to have a reliable 

method for estimating the error rates that it incurs to have 

some measure of its utility and to be able to assess its 

performance relative to other allocation rules. Accordingly, 

we need to consider methods of estimating the error rates 

arising from the allocation rule derived. Lachenbruch and 

Mickey [24], [7], [8], [9] discussed some means of estimating 

error rates for a given discriminant function. An object from 

π1may be misclassified into π2. Also an object from π2 may 

be misclassified into π1. If misclassification occurs, a loss is 

incurred. Let c (i/j) be the cost of misclassifying an object 

from πj into πi. The objective of the study is to find the best 

classification rule. “Best here means the rule that minimizes 

the Expected Cost of Misclassification (ECM). Such a rule is 

referred to as the Optimal Classification Rule (OCR). In this 

study we want to find the OCR where X is discrete and to be 

more precise, Bernoulli. 

2. Classification Procedures 

2.1. Location Model 

The classical discriminant analysis assumes that the 

discriminatory variable v is continuous and assumes 

normality. Often in practice, the discriminatory variable is a 

mixture of continuous and discrete variables. Let v denote a 

random vector of observations made on any individual which 

is a mixture of q discrete variables x and p continuous 

variables y. if the i
th 

discrete variables has si categories (i = 

1, …., q) then the contingency table formed from x has s = s1 

x s2 x … x sq locations; and denote these locations by z1, 

z2, …, zs. then the location model (LM) as proposed by 

Krzanowski [14] has the following distribution assumptions:  

(1) The conditional distribution of y given that x falls in 

location zm is ��(�(��, Σ� 

(2) The marginal distribution of the locations is given by  	(
 = ��� = 	�, with ∑ 	� = 1��              (1) 

Afifi and Elashoff [15] adopted the location model by 

allowing different values for the continuous variable location 

means µi
(m)

 and multinomial probabilities pim (m = 1, …, s) in 

the two populations (i = 1, 2) but constraining the conditional 

continuous variable dispersion matrix ∑ to be constant over 

all locations and over both populations. From the normality 

assumption of the model, the conditional probability density 

of y, given that the discrete variables locate the individual in 

cell m, is  

�(����/�|�|�� ��� �− �� (� − ��(���′Σ!�(� − ��(���"       (2) 

In πi, (i = 1, 2). Thus the joint probability density of 

obtaining the individual cell m and observing the continuous 

variable values y is 

#$%(����/�|�|�� ��� �− �� (� − ��(���′Σ!�(� − ��(���"        (3) 

In πi, (i = 1, 2). Inserting these two joint probability 

densities into the likelihood ratio rule, and tidying up the 

expression by algebraic manipulation yields the allocation 

rule:  

Allocate the individual &′	 = 	 (�′, �′) to πi if the discrete 

variables x correspond to the m
th

 multinomial cell and  

(��(�� − ��(��)′*!� �� − �� (��(�� + ��(��)" ≥ ln	(#�%#�%)      (4) 

Otherwise allocate v to π�. 

Given that the LM is appropriate, probabilities of 

misclassifications from populations π�  and	π�  are shown to 

be.  

	�� = ∑ 	�0Φ 23− ln 4	�0 	�05 6 − �� △0�8 △05 9�0:�      (5) 

	�� = ∑ 	�0Φ 23ln 4	�0 	�05 6 − �� △0�8 △05 9�0:�      (6) 

Where ∆j
2
 = (µ1

(j)
- µ2

(j)
)∑

-1 
(µ1

(j)
- µ2

(j)
) is the Mahalanobis 

squared distance between πI and π2 in cell j of the 

multinomial table, and Φ(.) is the cumulative normal 

distribution function.  

The allocation rule for the LM can be derived following 

basic principles. Define the conditional probability density of 

y, the continuous variable, given that the discrete variable 

locate the individual in cell m, to be  

;�(< ∖ 
�� = �(���>/�|�|�� ��� �− �� (� − ��(���′Σ!�(� − ��(���"                                                (7) 

Then, the joint probability density of obtaining the individual cell m and observing the continuous variable values y is 
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;�(&� = #$%(���>/�|�|�� ��� �− �� (� − ��(���′Σ!�(� − ��(���"                                                   (8) 

In πi, (i = 1, …, g). taking natural logs on both sides  

?@;�(&� = ?@	�� − �� ?@A(2C�D|∑|E − �
� (� − ��

(�))′Σ!�(� − ��
(�))                                          (9) 

= F + ?@	�� +	(��
(�))′Σ!�(� − �

� ��
(�))               (10) 

Where q = - ½ ln((2Ӆ)
c
/∑/) – ½ y

1
∑

-1
y. Since q has the 

same value for all populations πi in cell m, the allocation rule 

is  

Allocate v
1
 = (y

I
, x

I
) to the population πi in cell m for 

which  

?@	�� +	(��
(�))′Σ!�(� − �

� ��
(�))  is greatest       (11) 

2.2. Logistic Discrimination 

We have primarily concerned with discrimination and 

classification assuming a multivariate normal model for the 

variables in each group. However, one often finds that the 

variables in a study are not always continuous, but a mixture 

of categorical and continuous variables. If the group 

membership variable is categorical or a mixture with 

continuous, then logistic discrimination may be performed 

using logistic regression (Bull & Donner, [16]. “Logistic 

discrimination can be viewed as a partially parametric 

approach as it is only the ratios of the densities (fi(v)/fj(v), i ≠ 

j) that are being modelled.” (Mclachlan, [17]).  

The logistic approach to discrimination is postulated as an 

alternative for discrimination and classification by parametric 

specification of the posterior probabilities P(π1/v) and P(π2/v) 

where  

	(Π� H⁄ ) = JKL	(MNOMPQ)
�ORS�	(MNOMPQ) ; 		(U� H⁄ ) = �

�ORS�	(MNOMPQ)			  (12) 

With α0 = α0 – k, and k is any of the forms discussed 

earlier. The fundamental assumption of the logistic approach 

to discrimination is that the log of the ratio of the group – 

conditional densities is linear, that is,  

?@ V#(W� Q⁄ )
#(W� Q⁄ )X = YZ + Y[H.	                       (13) 

The classification rule, therefore is  

if YZ + Y[H ≥ 0, assign V to Π�,                 (14) 

Otherwise assign v to π2.  

Directly generalizing the LD to the g-group case, the 

model for the posterior probabilities is given as:  

	(Π� H⁄ ) = �� �(YZ + Y[H) 	(U^ H⁄ )	_ℎ�a�	b1, … , d!�(15) 

	(U^ H⁄ ) = 	 �
�O∑ RS�(MNOMPQ)e_�

$g�
                      (16) 

We therefore assign v to the group which has the greatest 

posterior probability. Thus  

Allocate v to the population πi for which p(πi/v) is greatest.  

2.3. Testing Adequacy of Discriminant Coefficient 

Consider the discriminant problems between two 

multinomial populations with mean µ1 µ2 and common matrix 

∑. The coefficient of the MLD discriminant function a
1
x are 

given by α = ∑
-1

δ where δ= µ1µ2. In practice of course the 

parameters are estimated by	χi1	χi2 and S = m
-1

{(n1 – 1)s1 + (n2 

– 1)s2}, where m = n1 + n2 – 2  

Letting the coefficient of the sample MLDF given by  

j = k_!�l 

A test of hypothesis H0: αi = 0 using the sample 

Mahalanobis distances D
2

p = Md
1
W

-1
d and D

2
1 = Md

1
W11d 

has been proposed by Rao (1965) this test statistics uses the 

statistic:  

mn�!�O�oD�(pq�!	pr�)
(�O	D�pq�) s                        (17) 

Where t�	 = 	 u�u�
u  under the null hypothesis has Fp – k, m – 

p + 1 distribution and we reject H0 for large value of this 

statistics.  

2.4. Evaluation of Classification Function 

One important way of judging the performance of any 

classification procedure is to calculate the error rates or 

misclassification probabilities (Richard and Dean, [18]). 

When the forms of parent populations are known completely, 

misclassification probabilities can be calculated with relative 

case. Because parent populations are rarely known, we shall 

concentrate on the error rates associated with the sample 

classification functions. One this classification function is 

constructed a measure of its performance in future sample is 

of interest. Total probability of misclassification (TPM) is 

given as: 

v	k = 	 	� w ;�l� +		� w ;�l�	x�x�               (18) 

The smallest value of this quantity by a judicious choice of 

R1 and R2 is called the optimum error rate (OER).  

OER = minimum TPM 

2.5. Probability of Misclassification 

In constructing a procedure of classification, it is desired to 

minimize on the average the bad effects of misclassification 

(Onyeagu [19], Richard and Dean, [18], Oludare [20]). 

Suppose we have an item with response pattern x from either 

µ1 µ2. We think of an item as a point in a r-dimensional space. 

We partition the space R into two regions R1 and R2 which 

are mutually exclusive. If the item falls in R1, we classify it 
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as coming from µ1 and if it falls in R2 we classify it as coming 

from µ2. In following a given classification procedure, the 

researcher can make two kinds of errors in classification. If 

the item is actually from µ1 the researcher can classify it as 

coming from µ2. Also the researcher can classify an item 

from µ2 as coming from µ1. We need to know the relative 

undesirability of these two kinds of errors in classification. 

Let the priori probability that an observation comes from µ be 

q1, and from µ2 be q2. Let the probability mass function of µ1 

be f1(x) and that of µ2 be f2(x). Let the regions of classifying 

into µ1 be R1 and into µ2 be R2. Then the probability of 

correctly classifying an observation that is actually from µ1 

into µ1 is 

P(1/1) = ∑f1(x) and the probability of misclassifying such 

an observation into µ2 is P(2/1) = ∑f1(x) similarly, the 

probability of correctly classifying an observation from µ2 to 

µ2 is P(2/2) = ∑f2(x) and the probability of misclassifying an 

item form µ1 into µ2 is P(1/2) = ∑f2(x)  

The total probability of misclassification using the rule is  

TPMC(R) = q1 ∑f1(x) + q2 ∑f2(x) 

In order to determine the performance of a classification 

rule R in the classification of future items. We compute the 

total probability of misclassification known as the error rate. 

Lachenbruch [21] defined the following types of error rates.  

(i) Error rate for the optimum classification rule, Ropt. 

When the parameters of the distributions are known, the 

error rate is  

TPMC (R) = q1 ∑f1(x) + q2 ∑f2(x) which is optimum for 

this distribution. 

(ii) Actual error rate: the error rate or the classification 

rule as it will perform in future samples.  

(iii)Expected actual error rate: the expected error rates for 

classification rules based on samples of size n1 from π1 

and n2 from π2.  

(iv) The apparent error rate: this is defined as the fraction 

of items in the initial sample which is misclassified by 

the classification rule.  

Table 1. Confusion matix of apparent error rate. 

 π1 π2  

π1 n11 n12 n1 

π2 n21 n22 n2 

   N 

The table above is called the confusion matrix and the 

apparent error rate is given by  

	(yt) = 	 @�� +	@��
@  

Hills [22] called the second error rate the actual error rate 

and the third the expected actual error rate. Hills showed that 

the actual error rate is greater than the optimum error rate ad 

it in turn is greater than the expectation of the plug-in 

estimate of the error rate. Martin and Bradley [23] proved a 

similar inequality. An algebraic expression for the exact bias 

of the apparent error rate of the sample multinomial 

discriminant rule was obtained by Goldstein and Wolf [24]. 

Who tabulated it under various combinations of the sample 

sizes n1 and n2. The number of multinomial cells and the cell 

probabilities. Their results demonstrated that the bound 

described above is generally loose.  

3. Simulation Experiments and Results  

The two classification procedures are evaluated at each of 

the 118 configurations of n. r and d. the 118 configurations of 

n. r and d are all possible combinations of n = 40, 60, 80, 

100, 200, 300, 400, 600, 700, 800, 900, 1000, r = 3, 4, 5 and 

d = 0.1, 0.2, 0.3 and 0.4. a simulation experiment which 

generates the data and evaluates the procedures is now 

described.  

(i) A training data set of size n is generated via R – 

program where n1 = n/2 observations are sampled from 

π1. Which has multivariate Bernoulli distribution with 

input parameter p1 and n2 = n/2 observations sampled 

from π2 which is multivariate Bernoulli with input 

parameter p2 j = 1 …. r. these samples are used to 

construct the rule for each procedure and estimate the 

probability of misclassification for each procedure is 

obtained by the plug-in rule or the confusion matrix in 

the sense of the full multinomial.  

(ii) The likelihood ratios are used to define classification 

rules. The plug-in estimates of error rates are 

determined for each of the classification rules.  

(iii) Step (i) and (ii) are repeated 1000 times and the mean 

plug-in error and variance for the 1000 trials are 

recorded. The method of estimation used here is called 

the re-substitution method.  

The following table contains a display of one of the results 

obtained  

Table 2. Effect of input parameters P1 and P2 on classification rules at 

various values of sample size and Replications (mean apparent error rates). 

Sample Sizes Location Logistic 

40 0.375450 0.319000 

60 0.388275 0.343100 

100 0.397100 0.366815 

140 0.403185 0.378457 

200 0.406535 0.387760 

300 0.409476 0.397721 

400 0.410733 0.400930 

600 0.411401 0.406289 

700 0.411607 0.407172 

800 0.411591 0.408018 

900. 0.411157 0.408085 

1000 0.411698 0.409524 

P1 = (.3,.3,.3,.3), P2 = (.4,.4,.4,.4), p(mc) = 0.411 
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Table 3. Effect of input parameters P1 and P2 on classification rules at various values of sample size and Replications (actual error rates). 

Sample Size Location Logistic 

40 0.045593 0.050941 

60 0.039000 0.045663 

100 0.031173 0.034565 

140 0.028195 0.032885 

200 0.022021 0.027185 

300 0.018802 0.024630 

400 0.016928 0.020336 

600 0.013791 0.017737 

700 0.012824 0.016275 

800 0.012305 0.015970 

900 0.011381 0.014064 

1000 0.010420 0.013622 

P1 = (.3,.3,.3,.3), P2 = (.4,.4,.4,.4), ( ) ( )
∧

−p m c p m c  

Table 4. Total Ranks for performance on 21 population pairs by the classification rules. 

 r = 3 r = 4 r = 5 Total Position 

LM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 27 1 

LD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 36 2 

 

A glance in tables 1, 2, and 3 Mean apparent error rates 

increases with the increase in sample sizes in the two 

classification rules under study. The actual error rate 

decreases with the increase in the sample sizes. Location 

Model ranked first followed by Logistic Regression Model. 

The results presented in this paper have practical implications 

for the decision of when to use each technique. Because of its 

demonstrated high levels of accuracy, Location Model may 

be the method of choice when the researcher is most 

interested in recovering the highest percentage of correct 

classification. However, as the results of both studies 

indicate, there are times when Logistic Modeling may 

provide a better alternative. In situation where the numbers of 

variables are large, Logistic Modeling has demonstrated 

higher levels of classification accuracy.  

4. Conclusions  

In this study, there was a decline in the misclassification 

error rates for both location and logistic models as the 

sample size increases. The error rates of misclassification 

reduces rapidly as group separator increases. Logistic 

model showed higher coefficient of variation than location 

model in general.  

The results from the present studies provide strong 

implications for the practical use of location and logistic 

models. Research into misclassification analysis is very 

important for understanding when to use which classification 

method and the implications of using one method over 

another. A better understanding of these concepts will 

eventually lead to better accuracy in classification and better 

accuracy in classification should be a goal for all areas of 

research that are classification methods.  

Recommendations  

Based on our findings we recommend as follows:  

1 Location model should be used when it is necessary to 

increase the distance function and samples sizes.  

2 Location model should be preferred over logistic model 

for smaller number of variables.  
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