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Abstract: This paper studies random integral of the form gdM∫ , where f is a function taking value in a paranormed vector 

space X, and M  is an independent scattered vector random measure. Random integrals of this type are a natural generalization 

of random series with paranormed space valued coefficients. Some limit theorems of integrals with respect to vector random 

measures are proved. 
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1. Introduction 

The idea of random measures first appeared in Bochner's 

paper [1], and a variety of discussions followed [8, 10, 12, 15, 

17, 18, 19, 20]. The aim of this article is to study random 

integral of the form gdM∫ , where g is a function taking value 

in a paranormed vector space X, and M is an independent 

scattered vector random measure. Random integrals of this type 

are a generalization of random series with Banach space valued 

coefficients. It is well known that the asymptotic behavior of 

such series depends also on some geometric properties of the 

Banach space X (or a metrizable space) [3, 4, 6, 8, 16]. On the 

other hand, the existence of certain bounded linear operators on 

appropriate function spaces which we call random integrals 

depends in general on a geometric structure of X [12, 18, 19]. 

This paper defines and studies random integrals without 

any restriction in the geometry of X, devotes to the study of 

independently scattered vector random measures with 

emphasis on their convergence properties, presents 

convergence theorems of random integrals of the forms 

ng dM∫  and gdM∫ , where ng  and g are taking values in a 

paranormed vector space X, and nM  and M are 
1

R -valued 

random measures. 

 

2. Paranormed Spaces 

Let K be the field of real numbers or the field of complex 

numbers, and X be a vector space over K. A paranorm || ||⋅  is 

a function defined on X, satisfying 

|| || 0x ≥ , || || 0 0x x= ⇔ = ; 

|| || || || || ||x y x y+ ≤ + ; 

|| || || ||x x− = ; and 

0
lim || || 0n
n

xα
→

= , for any sequence { }n Kα ⊂ ; 

0
lim || || 0n
n

xα
→

= , for any sequence { }nx X⊂ . 

Since || || || || || ||x y x y− ≤ + , for ,x y X∀ ∈ , || ||x y−
 

defines a metric on X. X equipped with the metric topology is 

said to be a paranormed space. 

A paranormed space is said to be complete if every 

Cauchy sequence {xn} is convergent in X. 

Any Banach space is a complete paranormed space. But 

the converse is not true. 

A seminorm is function q defined on X and satsfying 

q(x) ≥ 0; 

q(x+y) ≤ q(x) + q(y); and 

( ) ( )q x q xα α=  for any scalar α . 

From [2], one has the following Lemma 1.1. 
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Lemma 1.1 X is a complete paranormed space if and only 

if there is a family of continuous siminorms Q = {qn; n = 1, 

2, ….} on X, such that 

1 2( ) ( ) ( )nq x q x q x≤ ≤ ⋅⋅⋅ ≤ ≤ ⋅⋅ ⋅ , x X∀ ∈ . 

And the paranorm on X can be given by 

1

( )1

1 ( )2

n

nn
n

q x
x

q x

∞

=
=

+∑ , x X∀ ∈ . 

For any sequence{ }nx X⊂ , and x X∈ , the following are 

equivalent 

lim n
n

x x
→∞

= ; 

lim 0n
n

x x
→∞

− = ; or 

lim ( ) 0n
n

q x x
→∞

− = , q Q∀ ∈ . 

3. Random Integrals 

Let (T, Σ) be a measurable space, and ( , , )PΩ Γ  be a 

probability space. A function 

M: 0 ( , , )L PΣ → Ω Γ  

is said to be an independently scattered random measure if 

for every pairwise disjoint sets nA ∈ Σ , random variable 

( )nM A  are independent, n =1, 2, …, and 

1 1
( ) ( )n n nn

M A M A
∞∞

= =
=∑∪ . 

Every independently scattered random measure M can be 

decomposed into two independent and independently 

scattered random measure M = Ma + Mc, where Ma is pure 

atomic, and Mc is atomless. 

Let ( , , )T µΣ  be a finite measure space, and ν  be an 

infinitely divisible distribution on 
1

R . The function 

M: 0 ( , , )L PΣ → Ω Γ  

is a random measure on ( , , )T µΣ  generated by ν if M is 

independently scattered and, for every A∈Σ , 

L * ( )( ( )) AM A µν= , 

where * pν  is the p
th

 convolution power of ν . 

Daniell-Kolmogorov’s Consistency Theorem implies the 

existence of a random measure on every measure space 

generated by every infinite divisible law. 

In what follows we assume that ν is symmetric. From [3], 

we may write 

exp( ( )) exp[ ( ) ( )]E iuM A A K uµ= − ,             (1) 

where 

2 21
( ) (1 cos ) ( )

2
K u u uv m dv

+∞

−∞
= σ + −∫ ,           (2) 

while m is a symmetric σ -finite measure on 1R  such that 

0})0({ =M and 2min(1, ) ( )v m dv
+∞

−∞
< ∞∫ . We write 

2[ , ]M m≅ σ  if (1) and (2) hold. 

In the sequel let X be a paranormed space, 'X  be the 

topological dual space of X. 

A function g: T → X is said to be a simple function if there 

exist pairwise disjoint measurable sets Bj∈Σ and xj ∈X (j= 1, 

2, …, k) such that 

),,1(

,0
)(

kjBs

otherwise

if，x
sg jj ⋅⋅⋅=∈





=  

For every A∈Σ , we set 

1
( )

k

j jj

A

gdM x M B A
=

=∑∫ ∩ , 

the µ- Integral of the simple function g is defined as 

1
( )

k

j jjT
g s d x B

=
µ = µ∑∫  

Definition 3.1 A function g: T → X is said to be M-

Integrable, if there exists a sequence of {gk} of simple 

functions from T to X such that 

lim ( ) ( )k
k

g s g s
→∞

= ，µ-a.e. on T                   (3) 

i.e., there exists E ∈  Σ and 0)( =Eµ  such that

lim ( ) ( )k
k

g s g s
→∞

=  for ATs \∈ ; and for every Σ∈A , 

k
A

g dM∫  converges in probability. 

If g is M-integrable, we put 

lim k
A Ak

gdM P g dM
→∞

= −∫ ∫ ,
 

then the symmetry and independence assumptions imply that 

for every seminorm Qq ∈ , every simple function g: T → X, 

and every Σ∈A  

{ ( ) } { ( ) }, 0k k
A T

P q g dM P q g dM> ε ≤ > ε ε >∫ ∫  

Hence condition (3) in the Definition 3.1 is equivalent to 

k
T

g dM∫  converges in probability.           (4) 

Let L )(ME  denote the linear subspace of 0 ( , , )XL T Σ µ
consisting of all M-integrable functions. Similar to the proof 

of the Theorem in [5], L ( )
E

M  is a complete metrizable 

vector space with the paranorm 

|| || min{1,|| ||} ( ) min{1,|| ||}M
T T

g g dt E fdM= µ +∫ ∫  
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A random variable 
2[ , ]M m≅ σ  is said to be Poissonian if 

2 0σ =  and 
1( )M R < ∞ . 

Proposition 3.1 If M is a poissonian random measure on 

( , , )T Σ µ , then 

L ( )
E

M = 0 ( , , )XL T Σ µ  

Proof. Without loss of generality, we may assume that
1( ) 0M R > . For 0u ≥ , set 

∫= )(}1|,|min{)( dvmuuH ν  

then 

( ) ( ) *

0

min{ | ( ) |,1}

( )
min{ | |,1} ( )

!

( ) ( ).

k
A m R k

k

E u M A

A
e u v m dv

k

H u A

+∞∞−µ
= −∞

µ=

≤ µ

∑ ∫  

Therefore, for any simple function 

),,1(

,0
)(

kjBs

otherwise

if，x
sg jj ⋅⋅⋅=∈





=  

where Bj∈Σ pairwise disjoint measurable sets, and for any 

seminorm q in Q we have 

1

min{ ( ),1}

min{ ( ) | ( ) |,1}

T

k

j jj

E q fdM

E q x M A
=

≤

∫

∑
 

1
( ( )) ( )

( ( )) ( ).

k

j jj

T

H q x A

H q f dt

=
≤ µ

= µ

∑

∫
 

The proof is completed. 

Proposition 3.2 Suppose that | ( ) |E M T < ∞ . Then, there 

exists a constant CM such that for every simple function
1:g T R→ , 

1
2 2| | ( )M

T T
E gdM c g d≤ µ∫ ∫  

Proof. Suppose M = Ma + Mc, where Ma is pure atomic, 

and Mc is atomless. 

Write 
1

( )
n

k

n Bn
g s b

=
= χ∑ , where Bn ∈Σ pairwise disjoint 

measurable sets, one has 

1
2 2

1
2 2 2

1

1
2 2

0

| |

( | |)

( ( ))

( |) ,

a
T

a
T

k

n a nn

T

E gdM

E g dM

b EM B

c g d

=

≤

=

= µ

∫

∫

∑

∫

 

where 0c  is a constant. And there exists a constant 1c  such 

that 

1
2

11

1

| |

( | | ( ))

| | |.

c
T

k

j nn

T

E gdM

b EM B

c g d

=
≤

≤ µ

∫

∑

∫

 

Taking 
1

2
0 1

( )
M

c c c T= + µ , then 

1
2 2| | ( )M

T T
E gdM c g d≤ µ∫ ∫  

Proposition 3.3 If g is M-integrable, '' Xx ∈ , then )(' gx  is 

M-integrable, and 

'( ) '( )
A A

x gdM x g dM=∫ ∫  

Proof. The M-integrability implies that there exists a 

sequence {gk} of simple functions from T to X such that 

lim ( ) ( )k
k

g s g s
→∞

= ，µ-a.e. on T 

and 

lim k
T Tk

gdM P g dM
→∞

= −∫ ∫  

Noting that kg  can be written as 

,

( )

1
( )

n k

n k

k n Bn
g s x

=
= χ∑  

where 
,n kBχ  is the characteristic function of the set ,n kB , i.e., 

,

,

1
( )

0,

n k

n k

s B
s

otherwise

∈χ = 


 

Therefore 

,

( )

1
'( ( )) '( )

n k

n k

k n Bn
x g s x x

=
= χ∑  

Hence 

,

( )

1
lim '( ( )) lim '( ) '( ( ))

n k

n k

k n B knk k
x g s x x x g s

=→∞ →∞
= χ =∑  

µ-a.e. on T. And 

( )

,1

( )

,1

lim '( )

lim '( ) ( )

'( lim ( ))

'( lim )

'( ).

k
Tk

n k

n n knk

n k

n n knk

k
Tk

T

P x g dM

P x x M B

x P x M B

x P g dM

x gdM

→∞

=→∞

=→∞

→∞

−

= −

= −

= −

=

∫

∑

∑

∫

∫
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Consequently, )(' gx is M-integrable. And by the 

uniqueness of the limit one concludes that 

'( ) '( )
A A

x gdM x g dM=∫ ∫  

4. Limit Theorems 

This section devotes to the proofs of some limit theorems 

of integrals with respect to vector random measures. 

A sequence { }
k

x X⊂  is said to be weakly convergent to 

Xx ∈  if for every '' Xx ∈ , there holds lim '( ) '( )k
k

x x x x
→∞

= , 

and denoted by lim k
k

w x x
→∞

− = . 

Definition 4.1 A probability measure µ  is said to be a 

control measure of the random vector measure M, and 

denoted by µ<<M , if 0)( =Aµ  implies 0)( =AM . 

Definition 4.2 A sequence }{ kM of random vector 

measures is said to be weakly converges in probability to a 

random vector measure M, denoted by lim k
k

wP M M
→∞

− = , if 

for every '' Xx ∈ , every Σ∈E , there holds 

lim '( ( ) ( )) 0k
k

P x M E M E
→∞

− − =  

Definition 4.3 A function g: T → X is said to be weakly M-

integrable, if for every '' Xx ∈ , )(' gx is M-integrable. 

Theorem 4.1 Suppose µ<<M . ∈kgg, L ( )
E

M  (k = 1, 

2,…), such that lim ( ) ( )k
k

w g s g s
→∞

− =  µ-a.e. If for any given 

t > 0, and if for any ' 'x X∈ , and any Σ∈A  

( ) 0
lim sup {|| '( ) || } 0k

AA k

P x g dM t
µ →

> =∫  

then 

lim k
A Ak

wP g dM gdM
→∞

− =∫ ∫  

Proof. From Egoroff Theorem, for any given 0>ε , there 

exists ( )A ε ∈ Σ , AA ⊂)(ε  and there exists N > 0, such that

( \ ( ))A Aµ ε < ε , and for all )(εAs ∈  

|| ( ) ( ) || ,
k

g s g s k N− < ε >                          (5) 

Hence 

||},)(||||)('{||2

]||))('('[||

]||)('[||

)(

)()(

TMggxP

tdMggxxP

tgdMdMgxP

k

k
A

A
k

A

⋅−≤

>−=

>−

∞

∫

∫∫

ε

εε

         (6) 

Combining (5) and (6) one concludes that 

( ) ( )
lim [|| '( ) || ] 0k

A Ak
P x g dM gdM t

ε ε→∞
− > =∫ ∫  

Therefore, for any given '' Xx ∈  

( )

( ) ( )

( )

[|| '( ) || ]

[|| '( ) || ]

[|| '( ) || ]

[|| '( ) || ].

k
A A

k k
A A

k
A A

A A

P x g dM gdM t

P x g dM g dM t

P x g dM gdM t

P x gdM gdM t

ε

ε ε

ε

− >

≤ − >

+ − >

+ − >

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

( )

( ) ( )

( )

[|| '( ) || ]

[|| '( ) || ]

[|| '( ) || ],

k
B

k
A A

B

P x g dM t

P x g dM gdM t

P x gdM t

ε

ε ε

ε

= >

+ − >

+ >

∫

∫ ∫

∫

 

where )(\)( εε AAB = . From the assumption 

( )

( )

lim [|| '( ) || ] 0

lim [|| '( ) || ] 0

k
Bk

Bk

P x g dM t

P x gdM t

ε→∞

ε→∞

> =

> =

∫

∫
 

Therefore 

lim k
A Ak

wP g dM gdM
→∞

− =∫ ∫  

Similar to the proof of Theorem 4.1 one has the following 

Theorem 4.2. 

Theorem 4.2 Suppose µ<<M . ∈kgg, L ( )
E

M  (k = 1, 

2,…), such that lim ( ) ( )k
k

g s g s
→∞

=  µ-a.e. For given t > 0, if 

0}||)('{||suplim
0)(

=>∫→
tdMgxP k

AkAµ
 

Then, for any Σ∈A  

lim k
A Ak

P g dM gdM
→∞

− =∫ ∫  

Theorem 4.3 Suppose M << µ . ,
k

g g ∈ L ( )
E

M  (k = 1, 

2, …), such that lim ( ) ( )k
k

g s g s
→∞

=  µ-a.e. If there exists 0C >

such that || ( ) || , ( 1,2,...)
k

g s C n≤ = , then g  is M-integrable, 

and for every Σ∈A  

lim k
A Ak

P g dM gdM
→∞

− =∫ ∫ . 

Proof. Since M << µ , 

( ) 0

( ) 0

( ) 0

lim sup [|| || ]

lim sup2 [|| || || 1 || ]

lim sup2 [ || ( ) || ]

0.

k
AA k

k
AA k

A k

P g dM t

P g dM t

P C M A t

µ →

∞µ →

µ →

>

≤ ⋅ >

≤ ⋅ >

=

∫

∫  

Therefore, from Theorem 4.2 

lim k
A Ak

P g dM gdM
→∞

− =∫ ∫  
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Theorem 4.4 Suppose ,...)2,1(, =kMM k are random 

vector measures, and lim k
k

P M M
→∞

− = , ∈g L ( )
E

M  and g is 

a bounded function under the weak topology of X, then g is 

weakly M-integrable and for every Σ∈A  

lim n
A Ak

wP gdM gdM
→∞

− =∫ ∫  

Proof. From Proposition 2.3, g is weakly M-integrable. 

Noting that lim k
k

P M M
→∞

− =  

( )

[|| '( ) || ]

[|| ' ( ) || ]

2 [|| '( ) || || ( )( ) || ]

[|| '( ) || ].

0.

k
A A

k
A

k

A A

P x gdM gdM t

P x g dM dM t

P x g M M T t

P x gdM gdM t

∞

ε

− >

≤ − >

≤ ⋅ − >

+ − >

=

∫ ∫

∫

∫ ∫

 

This completes the proof. 

Theorem 4.5 Suppose ,...)2,1(, =kMM k are random 

vector measures, where 
2[ , ]k nM ≅ σ µ , and | ( ) |

k
E M T < ∞ (k 

=1, 2, …), g is a bounded continuous function. If }{ kµ
weakly converges to µ , and if }{ kM weakly converges to 

M, then 

lim n
T Tk

wP gdM gdM
→∞

− =∫ ∫  

Proof. For every n > 0, there exists a compact subset 

TB ⊂  and a constant c > 0 such that 

sup ( )k
k

B cµ < < ∞ ,
1

sup ( \ )k
k

T B
n

µ < , 

and there exists a sequence of simple function 

( )

,1
( )

n l

l n B ln
g s x

=
= χ∑  (l = 1, 2, …) 

such that 

1
|| ( ) ( ) ||lg s g s

n
− < , Bs ∈ , 

and 

0sup || ( ) || sup || ( ) ||l
s s

g s g s c≤ < (l = 1, 2, …). 

Therefore 

2

2 2

\

2 2

0

2 2 1

0

|| ||

|| || || ||

( ) (2 ) ( \ )

(2 ) .

l n
T

l k l k
B T B

n n

g g d

g g d g g d

n B c T B

n c c n

−

− −

− µ

= − µ + − µ

≤ µ + µ

≤ +

∫

∫ ∫  

Hence, there exists a constant 01 >c  such that 

1

2 2 1 2
1 0

|| ||

( (2 ) ) ,

l k k
T T

E g dM gdM

c m c c n− −

−

≤ +

∫ ∫
 

By Chebyshev’s Inequality, for every t > 0 

lim limsup {|| || } 0l k k
T Tl k

P g dM gdM t
→∞

− > =∫ ∫  

Similarly, 

lim {|| || } 0l
T Tl

P g dM gdM t
→∞

− > =∫ ∫  

Noting that 

limsup {|| || }

limsup {|| || }

k
T Tk

k l k
T Tk

P gdM gdM t

P gdM g dM t

− >

≤ − >

∫ ∫

∫ ∫
 

limsup {|| || }

limsup {|| || }

l k l
T Tk

l
T Tk

P g dM g dM t

P g dM gdM t

+ − >

+ − >

∫ ∫

∫ ∫
 

limsup {|| || }

limsup {|| || }.

l k l
T Tk

l
T Tk

P g dM g dM t

P g dM gdM t

= − >

+ − >

∫ ∫

∫ ∫
 

Hence 

lim {|| || } 0k
T Tk

P gdM gdM t
→∞

− > =∫ ∫  

That is to say 

lim n
T Tk

P gdM gdM
→∞

− =∫ ∫  

On the other hand, for any An∈Σ (n = 1, 2,…) satisfying 

lim ( ) 0n
n

A
→∞

µ =  there exists a constant c2 > 0 such that  

1

2 2
2|| || ( || || )

n n
k k

A A
E gdM c g d≤ µ∫ ∫  

Since { }kµ weakly converges to µ , 

2 2lim limsup || || || ||
n n

k
A An k

g d g d
→∞

µ ≤ µ∫ ∫  

Hence 

lim limsup || || 0
n

k
An k

E gdM
→∞

=∫  

Again, Chebyshev’s Inequality implies that 

lim limsup {|| || } 0
n

k
An k

P gdM t
→∞

> =∫  

Which completes the proof. 
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5. Conclusion Remark 

Let (T, Σ) be a measurable space. A countably additive set 

function on Σ and taking values in 
0
( , )L PΩ  is said to be a 

random measure. Vector random measures arise naturally as 

a "Banach space generalization" of real-valued random 

measures. Let X be a Banach space, 0 ( , )XL PΩ  the set of all 

X-valued random variables. A countably additive set function 

on Σ taking values in 0 ( , )XL PΩ  is said to be an X-valued 

random measure. Vector random measures can be regarded as 

a "natural random generalization" of vector non-random 

measures studied by many authors. 

This paper extends the definitions of random measure and 

random integral to complete paranormed spaces, and devotes 

to the study of limit theorems of random integrals with 

respect to vector random measures. 
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