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Abstract: Probability distributions are used in the evaluation of wind energy potentials to describe the wind speed 
characteristics of the chosen location for wind farm establishment. However, the Weibull distribution that is the most chosen by 
wind energy modelers may likely fail to properly describe the wind speed data of certain locations, or it may not be the best 
model to describe wind speed when compared to the fitness of other probability distributions. Thus, in this study, four 
probability distributions are fitted to wind speed data from Yola, Nigeria. They are the Weibull, the exponentiated Weibull, the 
generalized power Weibull and the exponentiated epsilon distributions; and, all provided good fit to the wind speed dataset. 
The exponentiated epsilon distribution is new and provided the best fit. These models are compared based on the relative 
likelihood gain per data point; it is found that there is about 5% gain by the other three probability distributions over the 
Weibull distribution. Hence all the three distributions can also be used as wind models. The estimated average wind speeds 
computed using the four models at various hub heights show that wind is sufficiently available to support a wind turbine with a 
cut-in speed of 3 m/s at hub heights 90 m above ground level. For the exponentiated-epsilon model, average wind speed of 
3.68 m/s at hub height of 120 m above ground level can generate 6.11 W/m2 of electricity; and for a wind turbine of rotor 
diameter of 128 m with 12,868 m2 swept area, this amounts to 78.6 kW of electricity supply for a small-scale wind power 
project. Consequently, Yola holds a good potential for the establishment of a wind farm. 

Keywords: Cut-in Wind Speed, Exponentiated-Epsilon Distribution, Likelihood Gain, Turbine Hub Height, Wind Energy, 
Wind Farm 

 

1. Introduction 

The need for energy is increasing globally, particularly 
with increasing world population and the giant 
developmental strides by developing economies. For 
instance, energy consumption grew by 2.9% in 2018, the 
highest and fastest since 2010’s 1.5% [5]. This growth was 
led by natural gas and renewable energy sources, with wind 
and solar energy clinching 14.5% [5] while hydro and 
nuclear energies are included in the renewable energy 
portfolio. Yet Africa had only managed to contribute 3% of 
the global total growth, less than 9% of China’s alone while 
Nigeria, with its vast population and economic potential, 
could not appear on the renewable energy tables. For most 

developing economies and Nigeria for example, renewable 
energy sources portend the most realistic hopes for 
sustainable development. This assertion is, on the one hand 
due to the fact that fossil fuels are fast depleting with global 
risk of exhaustion by 2060 [4] while Nigeria’s target 
exhaustion is projected to 2050 with continued extraction [1]. 
On the other hand, renewable energy sources are freely 
available, self-replenishing and sustainable, and the cost of 
harnessing them reduces with use. 

Nigeria, like many African countries, is faced with 
tremendous challenges in meeting the growing needs for 
energy. The fast-growing population with dwindling 
investment in energy and other developmental infrastructures 
has resulted in very low per capita of electricity compared to 
many other developing economies. Yet, there is abundance of 
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renewable energy resources that can be harnessed to mitigate 
the energy deficit. The country has the potential of 150,000 
terra joule per year that can be generated from average wind 
speed of 2.0–4.0 m/s and other renewable energy resources 
[24]. There are many other studies in the literature portraying 
renewable energy potentials in the country, see for example 
[23, 14, 20]. Wind resource has been at the fore front in the 
global renewable energy growth. To successfully harness this 
resource, it is imperative to characterize its intermittent 
nature. 

2. Wind Speed Modeling 

The characterization of wind speed is of great significance 
in everyday endeavor of man. Its study has practical 
application in many areas, namely, determination of air 
quality and the movement of air pollutants [9, 19, 7], 
estimation of wind load on buildings and other physical 
objects including humans [27]; prediction of atmospheric or 
space probe and missile trajectory; and the production of 
energy from the wind [8, 15, 28, 11]. All these require 
thorough study of the wind regime. Wind energy production, 
in particular requires planned study of the intermittent nature 
of wind speed for proper wind farm siting, and the 
determination of effective cut-in and cut-out wind speeds for 
appropriate deployment of efficient wind turbines. For the 
understanding of this intermittent nature, probability 
distributions are deployed. 

The Weibull distribution is the most preferred and widely 
used probability distribution for modeling wind speed data. 
Its tractable nature and flexibility have often presented it the 
first choice among wind speed modelers and/or wind energy 
developers. Its moments are explicitly expressed in terms of 
the parameter estimates of sample wind speeds, and these are 
used in wind power assessment at proposed sites for wind 
power generation. 

However, many research questions have aroused regarding 
the dominant role of the Weibull distribution for wind energy 
assessment [21, 26]. Its validity for application to wind speed 
modeling is argued and shown not to be the best to properly 
describe the wind speed characteristics of certain times and 
locations [8]. Some probability distributions that have also 
been deployed for assessment of wind speed include 
generalized extreme value distribution of Gumbel (Type I), 
Fréchet (Type II) and reverse Weibull (Type III) [6] and 
mixed Rayleigh-Rice distribution [12]. Other non-Weibull 
distribution applications are found in [22, 16, 25]. 

Extended probability distributions do exercise better 
flexibility to capture the most versatile skewness property 
than the standard distributions. Although their moments are 
not easily expressed in explicit forms thus making direct 
estimations difficult, the existence of high tech computer 
systems and software makes this challenge less burdensome. 
Numerical integration capabilities in most of the 
mathematically oriented computer software, such as 
MATLAB and R statistical programming language, make the 
work much easier. 

3. The Models 

To determine a model to best fit wind speed dataset and 
provide efficient estimate of potential power in the wind, the 
best statistical practice is to fit many similar distributions and 
choose the best by appropriate model selection process. Thus, 
in this study, the Weibull distribution is compared to three 
other probability distributions to determine its efficacy in 
modeling wind speed datasets in Yola, Nigeria. Two 
extensions of the Weibull distribution namely; the 
exponentiated Weibull [17] and the generalized power 
Weibull [18] distributions; and the exponentiated epsilon 
distribution [10] will be used to model the wind speed 
dataset. These are given in equations (1) to (4), respectively, 
below 
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To estimate the parameters in each of equations (1) to (4) 
above, the fitdistrplus package of R statistical programming 
language will be used. The package offers opportunity for 
different methods of estimation, but in this study the default 
maximum likelihood method is chosen. For the Weibull 
distribution in equation (1), its parameters are estimated 
directly from the package; while to estimate the parameters 
in the models of equations (2) to (4), their density, 
distribution and quantile functions will be specified in the 
fitdistrplus package of R statistical programming language. 

4. Determination of Model Efficiency 

As stated earlier, the Weibull distribution is used in this 
study as a control model for the determination of the relative 
efficiency, in terms of likelihood gain per data point, of using 
the exponentiated Weibull, generalized power Weibull, and 
exponentiated-epsilon distributions. The gain in likelihood 
per data point, expressed in percentage, is used for the 
determination of relative efficiency of the other distributions 
over the Weibull distribution. A positive gain implies a 
distribution performed better in providing a good fit to the 
data while a negative gain implies a loss in likelihood of 
using the distribution over the Weibull distribution. It is 
computed by 

# = �$%
&�''(�
%
&�'')�

* − 1� × 100%,                   (5) 
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where . is the sample size, //0 is the log-likelihood function 
value of the distribution whose relative gain in likelihood per 
data point is sought and //1  is the log-likelihood function 
value of the distribution (in this case the Weibull distribution) 
against which the relative gain in likelihood per data point of 
the other distribution (s) is sought. 

5. Wind Energy Estimation 

From the Wind Energy Conversion (WEC) point of view, 
the energy in the wind is expressed as a function of a cube of 
the average wind speed. This is given by 

2 = 

3 4567,                                  (6) 

where 4 is the density of the air with standard value taken as 
1.225 kg/m3, and 56  is the average wind speed. 56  can be 
estimated directly for the Weibull distribution in equation (1) 
using the estimated parameter values, given by 

56 = �8Γ 	1 + 

�:�,                              (7) 

where �∙�̂ is the estimated parameter value. For the models in 
equations (2) to (4), the average wind speed, 56 , is computed 
at the estimated parameter values by 

56 = = ����;	@A�B�C
D ,                           (8) 

where @A  is the estimated parameter space, ����  are as 
specified in equations (2) to (4) and the upper limit of 
integration for equation (4) is EF . The integral will be 
evaluated numerically at the estimated parameter values in R. 

However, many other components are considered when 
discussing real power that is derivable from the wind. First, is 
the swept area, G, indicating radius of space through which the 
rotor turns. It is determined as the area of a circle with the rotor 
radius as main input. The second component is called the 
power coefficient. It is the proportion of the kinetic energy of 
the wind convertible into mechanical energy that turns the 
rotor to generate electricity. Theoretically, only 59.3% of the 
kinetic energy of the wind can be converted by the best wind 
turbines [3]. And because of some mechanical factors 
impeding the wind turbines such as frictional force and 
machine aging, about half of the convertible kinetic energy of 
the wind is lost. This leaves only 10% - 30% of the power in 
the wind that is actually converted into electricity [13]. Thus, 
the power coefficient, H& , assume values in the range 10 – 
30%; and for this application, 20% is used to avoid extreme 
points. The power that is extractable from the wind is given, 
for this application, by 

2I = 

3 4GH&567,                               (9) 

Here we consider 56  as average wind estimated from the 
models. These are computed at selected heights to depict 
turbine hub heights for different applications. The heights are 

10 m (anemometer height), 30 m, 60 m, 90 m, 120 m and 150 
m above ground level. Wind speeds at these selected heights 
will be extrapolated using the relation given by 

53 = 5
 	J�
JK�

L ,                              (10) 

where 5
  is the wind speed at the anemometer height, M
 = 10  m, M3  is the projected height at which the 
extrapolated wind speed, 53 , is sought, and N  is the shear 
exponent taken as 0.3 for small towns with trees and shrubs 
[2], which is adopted for the Airport in Yola from where the 
wind speed data were collected. 

6. Results 

6.1. Extrapolation of Wind Speed 

The wind speed data collected at the Yola Airport at 
anemometer height of 10 m were not sufficient for analysis in 
order to estimate the extractable power from the wind. Five 
other heights were selected that could represent different 
applications and wind speed extrapolated for those heights 
using the relation in equation (10). The wind speed at 10 m 
anemometer height, are represented in Figure 1 below. 

 

Figure 1. Plots of the Weibull, Exp-Weibull, G-Power Weibull and Exp-

Epsilon distributions for wind speed at 10 m anemometer height. 

6.2. Parameter Estimates and Goodness-of-Fit Test 

The estimates of parameters and standard errors of the four 
models to the wind speed dataset and the Kolmogorov-
Smirnov goodness-of-fit test results are presented in Table 1 
below. 
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Table 1. Parameter Estimates and Goodness-of-fit Test Results. 

Height (m) Model 
Parameter estimates OO KS Remark PA	�QR� S:	�QR� T:	�QR� 

10 

Wei 1.969 (0.039) 2.766 (0.107) NA -363.61 0.0689 Good fit 
Exp-Wei 0.617 (0.234) 1.054 (0.196) 10.880 (6.263) -344.93 0.0458 ‘’ 
GP-Wei 1.122 (0.058) 5.813 (0.775) 0.237 (0.044) -344.49 0.0485 ‘’ 
Exp-Eps 10.627 (1.814) 1.635 (0.136) 6.086 (1.840) -344.06 0.0445 ‘’ 

30 

Wei 2.738 (0.055) 2.766 (0.107) NA -483.91 0.0689 ‘’ 
Exp-Wei 0.858 (0.330) 1.053 (0.199) 10.886 (6.360) -465.23 0.0457 ‘’ 
GP-Wei 1.559 (0.081) 5.816 (0.774) 0.237 (0.044) -464.79 0.0485 ‘’ 
Exp-Eps 10.621 (1.813) 1.176 (0.098) 8.462 (2.564) -464.36 0.0430 ‘’ 

60 

Wei 3.371 (0.068) 2.766 (0.107) NA -559.81 0.0688 “ 
Exp-Wei 1.057 (0.400) 1.054 (0.196) 10.874 (6.250) -541.13 0.0458 ‘’ 
GP-Wei 1.920 (0.099) 5.817 (0.775) 0.237 (0.044) -540.69 0.0485 ‘’ 
Exp-Eps 10.622 (1.816) 0.955 (0.080) 10.426 (3.177) -540.26 0.0431 ‘’ 

90 

Wei 3.907 (0.076) 2.766 (0.107) NA -604.21 0.0689 ‘’ 
Exp-Wei 1.188 (0.461) 1.051 (0.199) 10.959 (6.452) -585.53 0.0458 ‘’ 
GP-Wei 2.168 (0.112) 5.817 (0.775) 0.237 (0.044) -585.09 0.0485 ‘’ 
Exp-Eps 10.618 (1.808) 0.846 (0.070) 11.762 (3.534) -584.66 0.0431 ‘’ 

120 

Wei 4.150 (0.083) 2.766 (0.107) NA -635.71 0.0589 ‘’ 
Exp-Wei 1.301 (0.499) 1.054 (0.198) 10.882 (6.349) -617.03 0.0458 ‘’ 
GP-Wei 2.363 (0.123) 5.816 (0.778) 0.237 (0.045) -616.59 0.0486 ‘’ 
Exp-Eps 10.615 (1.818) 0.776 (0.065) 12.823 (3.902) -616.16 0.0431 ‘’ 

150 

Wei 4.438 (0.089) 2.766 (0.107) NA -660.14 0.0689 ‘’ 
Exp-Wei 1.350 (0.549) 1.039 (0.203) 11.383 (6.969) -641.47 0.0460 ‘’ 
GP-Wei 2.527 (0.131) 5.818 (0.777) 0.237 (0.045) -641.03 0.0486 ‘’ 
Exp-Eps 10.620 (1.808) 0.726 (0.060) 13.697 (4.113) -640.59 0.0431 ‘’ 

KS=Kolmogorov-Smirnov, CV=Critical Value, NA=Not Applicable 

From Table 1, the goodness-of-fit test results show the 
computed values of the test statistic are all less than the 
critical value of 0.0711. These imply that all the distributions 
significantly fitted the wind speed data of Yola at all heights. 

6.3. Percent Gain in Likelihood 

The log-likelihood function values in the //  column of 
Table 1 were substituted in the equation (5) to determine the 
relative gain in likelihood per data point. The results of 
5.25%, 5.38% and 5.50% for the exponentiated Weibull, 
generalized power Weibull and exponentiated epsilon 
distributions, respectively, were obtained at each of the 
heights. These show that all the non-Weibull distributions 
have gained significantly on the likelihood per data point, 
over 5%. However, the exponentiated epsilon distribution has 
gained a little above the exponentiated Weibull and the 
generalized power Weibull distributions in likelihood per 
data point. 

6.4. Wind Power Estimation 

The power in the wind is estimated based on the 
theoretical capability of 59% and the practical reality of 10 – 
30%. Here, a realizable target of 20% is set to avoid extreme 
points. The average wind speeds (56 ) obtained from the 
models of equations (1) to (4) are given in Table 2 below. 

Table 2. Mean wind speed (m/s) for different models. 

Model 
 Height (m) 

10 30 60 90 120 150 

Weibull 1.752 2.437 3.000 3.388 3.694 3.950 
Exp-Wei 1.748 2.432 2.994 3.365 3.686 3.942 
GP-Wei 1.745 2.424 2.985 3.370 3.674 3.928 
Exp-Eps 1.746 2.427 2.989 3.375 3.680 3.934 

a. Theoretical power estimate 

The theoretical power estimate is the 59% of the kinetic 
energy of the wind captured by a wind turbine that is 
convertible to electricity. It is computed by 

2U = 

3 × 1.225 × 0.59567                     (11) 

The power at 10 m anemometer height is not computed 
since it is not up to the minimum cut-in wind speed for most 
commercial turbines in use. The power computed at the 
projected heights are presented in Table 3. 

Table 3. Theoretical power density (Watts/m2) computed at the projected 

heights. 

Model 
Height (m) 

30 60 90 120 150 

Weibull 7.705 14.378 20.712 26.836 32.802 
Exp-Wei 5.197 9.702 13.770 18.103 22.131 
GP-Wei 5.146 9.611 13.825 17.922 21.899 
Exp-Eps 5.165 9.649 13.892 18.010 22.001 

b. Realizable power density 

As mentioned earlier, mechanical and other factors such as 
gearbox, bearings and generator also impact significantly on 
the amount of kinetic energy in the wind that is convertible 
into electricity. These factors also act to reduce the actual 
power output from a turbine. Consequently, the power that is 
realizable falls in the range of 10 – 30%. For this study, 20% 
is assumed to be realizable to avoid the curse of under 
estimation or overestimation. Thus, the realizable power 
density is computed by 

20 = 

3 × 1.225 × 0.2567                       (12) 
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The computed power density at projected height is given 
in Table 4 below 

Table 4. Realizable power density (Watts/m2) computed at the projected 

heights. 

Model 
Height (m) 

30 60 90 120 150 

Weibull 2.612 4.874 7.021 9.097 11.119 
Exp-Wei 1.762 3.289 4.667 6.137 7.502 
GP-Wei 1.744 3.258 4.686 6.075 7.423 
Exp-Eps 1.751 3.271 4.709 6.105 7.458 

7. Discussion 

Observe from Table 4 that the average wind speed at 
anemometer height (10 m) is not up to the cut-in wind 
speed required by most turbines. However, the 
extrapolated wind speeds show that wind resource is 
available for power generation at height 30 m and above. 
All the probability distributions fitted the extrapolated 
wind speeds and the analysis of their likelihood function 
values relative to the Weibull distribution show that 
exponentiated Weibull, generalized power Weibull and 
exponentiated-epsilon distributions fitted the wind speed 
data with more precision. In the same vein, Morgan et al 
[16] found that more complex distributions such as the 
four-parameter Kappa and the five-parameter Wakeby 
distributions gave much better results compared to the 
Weibull distribution. 

Although the three distributions are better than the Weibull 
distribution in fitting the wind speed dataset in Yola, the 
exponentiated epsilon distribution is much better with higher 
gain in likelihood per data point. 

The general results show that there is a potential for wind 
power generation in Yola. For instance, the average wind 
speed projected at 120m above ground level based on the 
exponentiated epsilon distribution is 3.68 m/s. This is 
sufficient to satisfy the cut-in wind speed requirement of 
most commercial wind turbines. For a turbine of rotor 
diameter 128 m with 20% efficiency, offering a swept area of 
12,868 m2, the amount of electric power it can produce is 
78.56 kW. Twenty of such turbines in a mini-grid wind farm 
can generate electricity amounting to 1.57 MW, sufficient to 
power a village with 1000 homes. 

8. Conclusion 

The analysis of wind speed at various heights above 
ground level show that only winds at 30 m above ground 
level can meet up the cut-in wind speed requirements of 
most wind turbines. The average speeds of the 
extrapolated winds based on the distributional assumption 
show there is ample potential for wind power generation 
in Yola. A wind farm consisting 20 wind turbines of swept 
area 12, 868 m2 and mounted at 120 m above ground level 
is shown to be capable of generating 1.57 MW of 
electricity. 
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