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Abstract: The goal of this work is to create methods for enhancing measurement error using regression calibration as a 

strategy by combining two samples, thereby increasing the relative efficiency of linear regression models. Because two or 

more samples are more likely to provide an accurate representation of the population than a single sample under inquiry, 

utilizing two samples in regression calibration is likely to produce a realistic depiction of what the actual population is when 

error-free. This study has generated independent estimates from two samples and combined them with weights equal to the 

inverse of their estimated probabilities of sample inclusion. It has also integrated two data sets into a single data set and 

suitably adjusted the weights on each sampled unit. The regression calibration method is most commonly used to correct 

predictor-response bias caused by variable measurement imperfections. Because of its simplicity, this method is often used. 

The fundamental principle behind regression calibration is to estimate the conditional expectation of a genuine response, given 

predictors measured with error and other covariates supposed to be measured without error. The predicted values are then 

estimated and used to assess the relationship between the response and an outcome in place of the unknown genuine response. 

Further information on the unobservable true predictors is required by the regression calibration program. This data is 

frequently obtained from a validation study that employs unbiased measurements for genuine predictors. This study has 

employed and compared the results obtained from the two sample approaches. Measuring errors can be produced by a variety 

of sources, including instrument error, laboratory error, human error, problems in documenting or executing measurements, 

self-reporting errors, and natural oscillations in the underlying amount. Covariate measurement error has three effects: In 

addition to hiding the properties of the data, which makes graphical model analysis difficult, it produces bias in parameter 

estimates for statistical models, resulting in a sometimes significant loss of power for detecting fascinating correlations 

between variables. The two sample approaches employed by the study have yielded acceptable results. 
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1. Introduction 

1.1. Background 

In this work, two-sample technique was employed to 

improve the efficiency of the regression model's coefficients 

through modeling and measurement error correction. In some 

ways, measurement error is the source of all statistical issues. 

When one or more variables in an interest model cannot be 

precisely measured, measurement error occurs. Such errors 

can occur for a variety of reasons, the most common of 

which being instrument and sample error. 

1.2. Measurement Error in Exposure Variables 

Measurement inaccuracy in exposure factors is well 

documented in a variety of research disciplines. 

Measurement error is defined as the difference between a 

variable's true and measured values [15]. Memory bias can 

occur when investigations are conducted in the past and 
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require a researcher to recall and record previous experiences. 

Measuring errors in research can also come from biological 

variations and equipment faults in laboratory testing. 

Assessing exposure accuracy has always been a challenge in 

research relating exposures to health outcomes [13]. 

This study focuses on the bias in exposure-outcome 

correlations when exposure variables are measured with errors. 

Because of the many exposures and associated inaccuracies, 

the exposure-outcome relationship may be biased in any way 

[5]. The presence of measurement error in the exposure 

problem has sparked a wave of technique research, initially 

focusing on understanding the effects of measurement error on 

the relationship between exposure and outcome and, more 

recently, on developing statistical approaches to correct for 

exposure measurement error [1, 4, 6]. 

2. Objectives 

2.1. General Objective 

Two Sample Approaches to Regression Calibration for 

Measurement Error Correction. 

2.2. Specific Objective 

1) Regression calibration is used to adjust for 

measurement inaccuracy in linear models. 

2) Create two sample models for better measurement error 

adjustments. 

3. Common Methods to Correct for 

Measurement Error 

This section lists the five most commonly used 

methodologies for bias adjustment and focuses on only one: 

regression calibration, the likelihood method, simulation 

extrapolation (SIMEX), Bayesian methods, and multiple 

imputation. This paper has concentrated on just one, 

describing regression calibration as a method for 

measurement error correction and how to improve its 

effectiveness by using numerous samples. 

3.1. Regression Calibration 

The regression technique with calibration is most 

commonly used to adjust for bias in the predictor-response 

relationship caused by measurement imperfections in the 

variables [2, 8, 9, 11, 14]. This method is popular since it is 

simple. The fundamental principle behind regression 

calibration is to estimate the conditional expectation of a 

genuine response, given predictors measured with error and 

other covariates supposed to be measured without error. The 

predicted values are then estimated and used to assess the 

relationship between the response and an outcome in place of 

the unknown genuine response. 

Further information on the unobservable true predictors is 

required by the regression calibration program. This data is 

frequently obtained from a validation study that employs 

unbiased measurements for genuine predictors. A validation 

study is usually smaller than the initial study and may include 

a random sample of the subjects from the first study [9]. 

When employing regression calibration, the measurement 

error in the predictors is often assumed to be non-differential 

[10]. In most cases, the technique produces consistent 

estimators of the association parameter [2]. 

3.2. Measurement Error and Its Effects 

3.2.1. Measurement Error in Exposures 

Blood pressure, biomarker readings, weight or height, 

calorie consumption, and levels of physical activity are 

examples of wrongly measured exposures. 

3.2.2. Sources of Measurement Error 

Instrument error, laboratory error, human error, faults in 

documenting or executing measurements, self-reporting 

errors, and natural oscillations in the underlying amount can 

all cause measurement errors. 

3.2.3. Set-up Notation 

Y: Outcome 

X: True exposure 

X*: Measured exposure 

U: Error 

*

U

X

X Y

↓

↑
→

                                       (1) 

The Linear regression model is given by 

Y = β0 + βXX + ε                               (2) 

The following three impacts are caused by covariate 

measurement errors: In addition to hiding data properties, 

which makes graphical model analysis difficult, it produces 

bias in parameter estimates for statistical models, resulting in 

a sometimes significant loss of power for discovering 

fascinating correlations between variables. 

3.3. Classical Measurement Error 

Definition: The classical measurement error model is 

defined as 

X* =X +U                                   (3) 

where U has a mean of 0 and a variance of σ
2

U. According to 

the paradigm, X is an impartial measure of X. We could get 

close to the truth, X, if we got multiple measurements of X 

from the same person and averaged them. 

3.3.1. The Effects of Classical Measurement Error 

Equation represents the linear regression model with X. (2), 

Y = β0 + βXX + ε 
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Using the linear regression model with X* 

Y = β0* +βX*X*+ ε                            (4) 

The impacts of classical measurement error include a 

distorted (attenuated) estimate of the slope of the connection 

and a loss of power to detect a link between variables. 

3.3.2. Measuring the Bias Caused by Measurement Error 

The linear regression model that employs X, equation (2), 

Y = β0 + βXX +ε 

The linear regression model using X*, equation (3), 

Y =β0* +βX*X* + ε 

The factor of attenuation 

* var( )

var( ) var( )
X X X

X

X U
β β λβ 

= = + 
             (5) 

The attenuation factor λ must be determined to account for 

the influence of the classical measurement error. An external 

study, a validation study in which X is seen alongside X* in a 

sample of study participants, and a replication study in which 

repeated assessments of X* are collected in a subset of 

research participants are all required for the study to estimate λ. 

3.3.3. Including Adjustment Variables 

Z is a perfectly measured covariate in a linear regression 

model with adjustment factors, 

Y = β0 + βXX + βZZ + ε                       (6) 

Y =β0* + βX*X*+βZ*Z + ε                     (7) 

Unlike errors in X, which cause *X to be attenuated 

(biased towards the null), errors in Z cause *Z to be skewed 

in any direction. The study emphasizes the significance of 

inaccuracies in confounding variables. 

3.3.4. Error in a Number of Explanatory Variables 

The linear regression model of interest is represented by 

equation (6), 

Y = β0 + βXX + βZZ + ε 

where X is measured with classical error and we observe X* 

rather than X. Z is also measured with classical error, and we 

observed Z* instead of Z. Using an error-prone metric and a 

linear regression model, equation (7), 

Y =β0* + βX*X* + βZ*Z* + ε 

Where β*X and β*Z may be biased in any direction. 

3.3.5. The Standard Regression Calibration Setting 

The study is interested in a regression with an outcome Y 

that has at least one error-prone X and possibly other precise 

covariates, a reasonable prediction model for unobserved X 

based on observed covariates, and data that informs the 

structure of the measurement error, such as modeling 

E[X|X*, Z], where the error in X* is independent of Y and 

also independent of (X, Z). 

3.3.6. Performing Regression Calibration (RC) 

The investigation begins by fitting the model for 

unobserved X to observed data: X̂ = E[X|X*, Z]. Second, the 

study replaces the unobserved X in the outcome regression of 

interest with X̂, and third, the study corrects standard errors 

in the outcome model caused by having to estimate X̂. 

The bootstrap and sandwich SE methods are two ways of 

obtaining SE for parameter estimates in a final result 

regression model. 

3.3.7. Regression Calibration (RC) for Linear Regression 

Assume that, in equation (6), 

Y = β0 + βxX + βzZ + ε 

and 

X* = α0 + αxX + αzZ + U                        (8) 

then 

E[Y|X*, Z] = EX|X*, Z[E(Y|X*, Z)|X] = EX|X*,Z[E(Y|Z, X)] 

= EX|X*,Z[β0 + βxX + βzZ] 

= β0 + βxE[X|X*, Z] + βzZ                       (9) 

Finally, regress Y on E[X|X*, Z] and Z to obtain the correct β 

coefficients. Where E[X|X*, Z] is the calibrated exposure. 

4. Two Sample Approach for Improving 

the Efficiency of Measurement Error 

Correction 

This work focuses on a two-sample strategy for improving 

the effectiveness of measurement error regression calibration. 

Assume two distinct samples and acquire relevant data about 

a single population, U. The paper presented three approaches 

for integrating data from the two samples in order to generate 

a single set of estimates of a population quantity or 

population parameter. 

A general solution to this problem is to obtain independent 

estimates from two samples and combine them with weights 

that are the inverse of their estimated variances [12] and their 

references. Another method is to combine two data sets into a 

single data set and alter the weights on each sampled unit 

appropriately [7]. 

As a result, there are now two identically sized samples of 

distinct or identical types that combine to form a bigger sample 

1 2
s s s= ∪ . Because of overlap, the number of different units in 

the combined sample would likely be less than the total. 

4.1. Design-Based Approaches 

4.1.1. Blended Methodology I 

Get separate estimates for each sample and combine them 

by the inverse of their estimated variances. 
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( )
( )

1 1 2 2

,

1 2

ˆ ˆ* * ( )
ˆ

( ) ( )
mix I

T E y T E y
T

E y E y

+
=

+
                  (10) 

Individual estimators ˆ
kT suited for the respective samples, 

such as their corresponding Horvitz-Thompson estimators, 

would be used in this case. The blended estimator was then 

calculated based on the predictor variables of the regression 

function, as illustrated below: 

( )
( )

1 1 2 2

1 2 3 4

1 2

ˆ ˆ* * ( )
ˆ , , ,

( ) ( )
mix

T E y T E y
T E x x x x

E y E y

 +
 =
 + 

   (11) 

4.1.2. Blended Methodology II 

Obtain independent estimates for each sample and weight 

them together by the inverse of their estimated variances, with 

the estimate with the lowest variance receiving the most weight. 

( )
( )

arg arg

,

arg

ˆ ˆˆ ˆ
ˆ

ˆ ˆ

l e small small l e

mix II

l e small

v T v T
T

v v

+
=

+
             (12) 

Individual estimators ˆ
kT suited for the respective samples, 

such as their corresponding Horvitz-Thompson estimators, 

would be used in this case. The blended estimator was then 

calculated based on the predictor variables of the regression 

function, as illustrated below: 

, 1 2 3 5

ˆ ˆˆ ˆˆ , , ,
ˆ ˆ

l s s l

mix II

l s

v T v T
T E x x x x

v v

  +
 =    +  

       (13) 

4.2. Using Overall Inclusion Probabilities 

To employ design-based techniques and make an estimate 

on the combined data s, we must first get the overall 

inclusion probabilities *

1 2 1 2i i i i i
π π π π π= + − . They can be 

used with a Horvitz-Thompson estimator, a Hajak estimator, 

or a model-assisted estimator. For example, the Horvitz-

Thompson estimator would be *
1 2

*ˆ
i ii s s

T w yπ ∈ ∪
=∑ with 

* * 1

i iw π −=  should be noticed that units that occur in both 

samples ("overlaps units") appear in the expression only 

once. This presupposes that duplicates can be identified. 

Weights, depending on their design, generally serve a dual 

purpose. They are expressly chosen because they produce 

desirable sampling features, such as the average of all possible 

samples used in the design being the target ("unbiasedness") or 

being sufficiently close to it ("near-unbiasedness"), and so on. 

They appear appropriate for the given sample insofar as they 

provide a fair mechanism for the units in the sample to 

appropriately reflect the population. As a result, sampling 

weights have two unique characteristics: (a) their sampling 

properties across prospective samples, and (b) their 

representativeness for this sample within this population. 

4.3. Model-Assisted Semi-Parametric Regression 

This study has modified the model-assisted regression of 

[3] for non-parametric regression estimation using model-

assisted semi-parametric regression estimation. According to 

[3], the model-assisted estimator would be a design-unbiased 

estimator of 

( ) ( )*ˆ i j

js U
i

y m x
T m x

π
−

= +∑ ∑  

if the actual means m(xj) were established for j U∈ . For 

this study, the model-assisted estimator would be a designed-

unbiased estimator of (Option A) 

( ) ( )0

0

*
   

   
x

ˆ x
j

j

i x j

x js U
i

y
T

π

β β ε
β β ε

+ +
++ +

−
=∑ ∑                                                  (14) 

The genuine objectives, the yi, and the mean values of ( )0
x   

jx j
β β ε+ + , which are only predicted to be close to the yi, 

differ from each other. The weighted-up residual adjustment in the first term takes this into account. 

The primary concept is to estimate the ( )0
x   

jx j
β β ε+ + using regression and then plug them into the preceding formula, 

equation (14), 

( ) ( )0

0

*
   

   
x

ˆ x
j

j

i x j

x js U
i

y
T

π

β β ε
β β ε

+ +
++ +

−
=∑ ∑ . 

Option B is a variant of option A, as given in equations (2) & (3) below: 

( ) ( )( ) ( )0 \0 0
ˆ x * x         x

j j ji x j i x j x ji s i s j U s
T sqrt y y

ε ε
β β ε β β ε β β ε

∈
+ + + + + += − − +∑ ∑ ∑                   (15) 

and 

( ) ( ) ( )*

0 0

0

      
   

x x
ˆ * x

j j

j

i x j i x j

x ji s i s j U
i i

y y
T sqrtπ

β β

π π

ε β β ε
β β ε

∈ ∈ ∈

+ + + +    − −
    = +
     

 

+



+
 

∑ ∑ ∑                 (16) 
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4.4. The Horvitz-Estimator 

Below is the Horvitz-Thompson estimator which for our 

study serves as a reference model with which the 

performance of models (1), (2) and (3) have been compared 

based on coefficient of determination, sample bias and 

standard error. 

*
1 2

*ˆ
i ii s s

T w yπ ∈ ∪
=∑                   (17) 

The study equally modified the Horvitz-Thompson model 

to obtain models which outperform it. Below is a modified 

model of the Horvitz-Thompson model: 

( )*
1 2

*

1 2 3 4
ˆ , , ,

i ii s s
T E w y x x x x

π ∈ ∪
= ∑        (18) 

4.5. Simulation Study 

The simulation analysis revealed that the model-assisted 

semi-parametric estimators outperformed the rival non-model-

assisted Horvitz-Thompson estimators by a wide margin. 

4.6. Two Sample Estimators and Their Equations 

Table 1 summarizes the two sample estimators built as 

well as the two sample Horvitz-Thompson estimator. 

Table 1. Summary of two sample estimators constructed and their equations. 

Estimator Formula Comment 

Blended Methodology I, 

BMI 

( )
( )

1 1 2 2

1 2 3 4

1 2

ˆ ˆ* * ( )ˆ , , ,
( ) ( )

mix

T E y T E y
T E x x x x

E y E y

 +
 =
 + 

  

Blended Methodology II, 

BMII , 1 2 3 5

ˆ ˆˆ ˆˆ , , ,
ˆ ˆ

l s s l
mix II

l s

v T v T
T E x x x x

v v

  +
 =    +  

 
v̂l= Larger variance, 

vs= Smaller variance 

Semi-parametric regression 

I, SPRI 

( ) ( )( ) ( )0 \0 0
ˆ x * x         x

j j ji x j i x j x ji s i s j U s
T sqrt y y

ε ε
β β ε β β ε β β ε

∈
+ + + + + += − − +∑ ∑ ∑

( )1 2 3 4
ˆ ˆ , , ,SPRIT E T x x x x=  

 

Semi-parametric regression 

II, SPRII 

( ) ( ) ( )*

0 0

0

      
   

x x
ˆ * x

j j

j

i x j i x j

x ji s i s j U
i i

y y
T sqrtπ

β β

π π

ε β β ε
β β ε

∈ ∈ ∈

+ + + +    − −
    = +
     

 

+


+
 

∑ ∑ ∑

( )* * 1 2 3 4,

ˆ ˆ , , ,
SPRII

T E T x x x xπ π=  

*

i
π π=  

*

1 2 1 2i i i i i
π π π π π= + −  

Semi-parametric 

Conditional Regression, 

SPCR 
( )*

1 2

*

1 2 3 4,
ˆ , , ,i iSPCR i s s

T E w y x x x xπ ∈ ∪
= ∑  

*

i
π π=  

*

1 2 1 2i i i i i
π π π π π= + −  

Horvitz-Thompson, HT *
1 2

*

,
ˆ

i iHT i s s
T w yπ ∈ ∪

=∑  

* * 1

i i
w π −=  

*

1 2 1 2i i i i i
π π π π π= + −  

 

5. Conclusion 

By combining estimates from two samples and estimating 

the coefficients of the regression function, this study has 

developed four approaches that increase the effectiveness of 

the regression calibration method. The results of these 

approaches are significantly better than the estimates from 

the weighted Horvitz-Thompson model, which served as the 

study's reference model. 
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