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Abstract: To analyze the spatial difference of COVID-19 import risk is helpful for scientific prevention and control. On the 

basis of clustering 25 provinces and cities with epidemic input in study time, a multinomial distribution model was established 

under the Bayesian framework. All parameters Bayesian estimation was obtained by MCMC method. 25 provinces and cities 

with overseas input were divided into 9 categories from March 3 to April 23, 2020. 468 overseas input risk values are regarded as 

parameters, and the maximum MC-error estimated by Bayesian is only 0.677% of the standard deviation. During the study period, 

25 provinces and cities have input risk. The highest risk areas of overseas import are 12 provinces and cities in the first category 

represented by Beijing, Shanghai and Guangdong Province, including 10 provinces and cities along the coast / border. The lowest 

risk areas are the eighth category (Henan Province) and the ninth category (Anhui Province); the fourth category (Heilongjiang 

Province and Shanxi Province) risk is higher than the first category in 7 days and it has the largest input vary fluctuation. Taking 

2020-3-22, 4-7 and 4-18 as time nodes, the overseas input risk is divided into four stages. In the first stages, the highest risk of 

overseas import is the first category (59.613%); in the second and third stages are the first category (decline from 60.505% to 

37.056%), the fourth category (increase from 16.071% to 33.852%); in the fourth stage, the first category (42.622%), the third 

category (Shaanxi Province and Jilin Province, 17.556%) and the fourth category (10.056%). 

Keywords: COVID-19, Overseas Input Risk, Multiple Distribution, MCMC Method, Bayesian Estimation 

 

1. Introduction 

As of 2020-3-28, there were 11 days in Wuhan, the worst 

affected area of the epidemic in China, with 0 new cases. On 

the same day, the Ministry of Foreign Affairs and the State 

Administration of Immigration issued a notice suspending the 

entry of foreigners holding valid Chinese visas and residence 

permits from 0:00 on March 28. 2020-4-8, Wuhan lifted the 

blockade, but the number of imported cases abroad was 1103. 

By 2020-4-23, 1618 cases had been recorded for overseas 

imports. China's epidemic prevention work has shifted to the 

importation of overseas cases (including overseas 

importation of associated cases) and asymptomatic infection 

prevention and control. Therefore, the spatial difference 

analysis of the risk of overseas imported cases can serve the 

decision-making of epidemic prevention and control in 

various provinces (cities). 

The existing quantitative study of COVID-19 mainly 

focuses on the description statistics of epidemic trends [1, 2] 

and trend estimation. For examples, estimates of the size of the 

COVID-19 outbreak were made using SEIR or modified SEIR 

models [3-5], self-regression moving average models 

(ARIMAs) [6], random transmission models [7], etc; 

COVID-19 regeneration estimation was carried out using the 

Marcof Monte Carlo Method (MCMC) [8-9] and so on. 

Bayesian method has some advantages in data analysis in the 

field of medicine, the uncertainty parameter value can be 

quantified under the premise of known data, and the 

quantitative accuracy of parameters can be improved by a 

priori information and data information [10]. For example, 

Han Ke et al. [11] used the Poisson distribution model under 
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bayesian framework to estimate the number of COVID-19 

regenerations in first-tier cities. On the study of spatial 

differences in the COVID-19 outbreak, the Johns Hopkins 

Center for Systems Science and Engineering produced a map 

of the global outbreak [12], with a maximum of more than 2 

billion daily visits. Guan Weijie etc [13] and Qi Cuifang etc 

[14] carried on the study of nationwide clinic characteristic of 

epidemic situation and COVID-19 inter-provincial 

communication and influencing factor analysis respectively, 

and both of them used GIS mapping to reflect the distribution 

of confirmed cases in each province and city. Yi Dali [15] and 

others carried out cluster analysis with the epidemic data in 34 

provinces and cities from 2020-1-19 to 2-16, a total of 6 

categories, among them, it was the high risk areas of Hubei 

Province and Henan Province that needed to be strictly 

controlled. According to Tencent location data and Baidu 

migration data, Liu Zhang [16] et al. have completed the 

spatial distribution estimate of people who moved out of 

Wuhan during the COVID-19 outbreak. In the scale of Wuhan 

City 1140 traffic analysis area, Feng Mingxiang [17] and 

others carried out COVID-19 space-time diffusion estimate 

combined with mobile phone user space interaction data. GIS, 

multi-source data and big data platform are effective methods 

for the study of COVID-19 outbreak simulation and spatial 

distribution differences. However, the analysis and processing 

of zero expansion data, missing data and short-term data by 

these methods often result in a great deviation from the actual 

situation. At present, foreign imported case data in China have 

the characteristics of zero expansion, geographical absence, 

data size differences, the result may deviate from the actual 

situation of the current domestic and foreign input if using the 

traditional method for analysis and processing. Based on the 

number of overseas imported cases from 2020-3-3 to 4-23 and 

the clustering results, this paper constructs a multinomial 

distribution model of the probability of input risk in each 

province and city under the framework of Bayesian, solves the 

model by MCMC method, and analyzes the spatial differences 

in the input risk of cases of COVID-19 outside China, The 

research results are expected to serve for epidemic prevention 

and control abroad. 

2. Data and Methods 

Collect daily new case data from 25 provinces (cities) in 

China involved in overseas imported cases from 2020-3-3 to 

4-23 as a sample (data from the Bulletin of the National Health 

And Health Commission and the Provincial and Municipal 

Health and Construction Commission). The zero expansion 

characteristics of this data are obvious, the daily data of 

provinces and cities are different, and the regional differences 

are obvious. For example, among 25 provinces and cities, 

Heilongjiang imported 86 cases in 2020-4-7, and it was the 

largest number of imported cases day by day, however there 

were 0 imported cases in 18 provinces in the same day. From 

the frequency (proportion) point of view, the frequency of 

foreign import cases was 0, but this could not be explained 

that there were no risk of overseas import in 4-7 in these 18 

provinces and cities. If we choose the methods used in the 

literatures to deal with these data, it inevitably results in most 

time points not in line with the actual situation. 

By using two clustering methods to cluster data from 25 

provinces and cities with overseas outbreak input in China, the 

results can be obtained relatively close. Based on the cluster 

results, the model of the probability of input risk abroad under 

Bayesian is established, the appropriate Dirichlet distribution 

is used as its priori distribution, the model parameters (input 

risk) are solved by MCMC method, and the GIS mapping is 

used to reveal the spatial difference of the input risk of 

COVID-19 cases abroad. The software used are R language 

and OpenBUGS, and the map mapping software are Adobe 

Illustrator and Photoshop. 

3. Model of Import Risk for Overseas 

Cases 

3.1. Clustering of Imported Cases from Abroad 

Programs are written in R language to cluster sample data 

(2020-3-3 to 4-23) from 25 provinces and municipalities. The 

name of the province and city is considered an indicator, the 

similarity coefficient between the two indicators �� , �� , (� ≠

�) is defined as 
�� =
�

���

‖�
‖�
�/������

�/�, among ‖∙‖�
�/�

 represents 

the square root of two norm of the vector [18], and the 

distance between the two variables is ��� = 1 − 
��. 
Usually the results of different clustering methods are 

different, and the determination of the number of 

classifications is not yet fully resolved. In the actual study, 

according to the purpose of the study, we generally choose a 

variety of methods of clustering, through comparative analysis, 

to determine the final clustering method and classification 

number to get better results [18]. 

Through the comparative analysis of various clustering 

results, it is found that the clustering results of the class 

average method (Average) and the similar method (Mcquitty) 

are close, and the average method of the class is not 

concentrated or expanded, which is the clustering method 

recommended by many literatures [19]. By combining the 

advantages of the two clusters, the following clustering results 

are obtained: 

Category I	(G�): Zhejiang, Beijing, Shanghai, Guangdong, 

Sichuan, Shandong, Yunnan, Guangxi, Fujian, Tianjin, 

Liaoning, Jiangsu, a total of 12 provinces and cities. The 

corresponding sample data from 2020-3-3 began to form a 

data matrix of the lower trapezoidal structure, the largest 

number of cases, up to 917 cases. 

Category II (G�): Jiangxi, Chongqing, Guizhou, 3 provinces 

and cities. Input cases were concentrated in 3-21 to 3-28, and 

the number was small, only 6 cases. 

Category III (G�): Shaanxi, Jilin, 2 provinces. Input cases 

were concentrated in 3-21 to 4-23, with continuous 

importation of overseas cases, a total of 49 cases. 

Category IV(G�): Heilongjiang, Shanxi, 2 provinces. Input 
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cases were concentrated in 3-18 to 4-23, with continuous 

importation of overseas cases, a total of 445 cases. 

Category V (G�	: Hebei, Hunan, 2 provinces. Input cases 

were concentrated in 3-21 to 4-15 cases, a total of 11 cases. 

Category VI 	�G!	:  Inner Mongolia. Input cases were 

concentrated in 3-24 to 4-15 cases, a total of 118 cases. 

Category VII	�G"	: Gansu. Input cases were concentrated 

in 3-5 to 4-5 cases, a total of 47 cases. 

Category VIII	�G#	: Henan. Input cases were concentrated 

in 3-11 to 3-25 cases, a total of 3 cases. 

Category IX	�G$	: Anhui. Only one input case in 4-8. 

 

Figure 1. Cluster tree of daily number of imported cases of 25 provinces or 

cities from March 3 to April 8, 2020. 

Note: Use Chinese Pinyin as the variable name of 25 provinces or cities, in 

order to avoid the same name in Pinyin, use shangxi to represent Shanxi 

3.2. Bayesian Model 

3.2.1. Construction of Model 

Any confirmed case of new import outside the province i of 

t-day is indicated by %&�, the	'(& indicates the number of new 

cases imported from outside on the t-day, and the number of 

cases entered from the province of category j on t-day is 

indicated by )&�, then '(& � ∑ %&�
��
�+� � ∑ )&�

$
�+� . The risk of 

foreign input for category j in t-day is defined as: ,-%&� ∈
/�0�	12'3�4
( ∈ /�5 � 1&� , ∑ 1&� � 1$

�+� . 
This probability expresses the risk of foreign input for 

category j in t-day. The higher the value, the greater the risk of 

the overseas COVID-19 input of category j on t-day, the 

greater the pressure of prevention and control from overseas 

input. The number	'(& of new overseas imported cases in the 

nine categories on day t-day is considered as '(& independent 

tests, and each confirmed case imported from abroad is 

considered to be a test. The test result can only belong to one 

of the nine categories, the risk probability of the case 

belonging to category �  is 1&�  and it is an evaluatable 

parameter. Vectors consisting of the parameters to be 

evaluated and data of new overseas imported cases in the nine 

categories on t-day are recorded as 7& 	and	�898& , namely: 

7& � �1&�, 1&�, 1&�, 1&�, 1&�, 1&!, 1&", 1&#, 1&$	: , �898& �
�)&�, )&�, )&�, )&�, )&�, )&!, )&", )&#, )&$	:. 

By the definition of multinomail distribution, we get 

~ ( , )t t tdata M oe θ and the likelihood function is: 

1�7&|�898&	 � <�'(& = 1	 ∏
?@�

A@�

B�C@�D�	
,$

�+�        (1) 

where	<�E	 � F GHI�(IJ�GK
L . According to proposals such 

as NguyenX (2016)
 
[20], the Dirichlet distribution is used as a 

priori distribution, and the number of provinces and cities 

contained in each category in the clustering results is used a 

priori information to select prior parameters, namely, 

M � �12,3,2,2,2,1,1,1,1	: , The priori density is 1�7&	 ∝
∏ 7&�

Q�I�$
�+� , and we obtain the post-test exact distribution of 

parameter	7&: 

7&~	S�2�
TU(9�M� = )&�, M� = )&�, M� = )&�, … , M$ = )&$	  

and the corresponding post-test density function is 

1�7&|�898& , M	 � <�'(& = 25	 ∏
?@�

A@�XY�

B-C@�DQ�5
$
�+� .     (2) 

By (2) we can get the full condition distribution of nine 

parameters, for example, in the case of 7&�, the corresponding 

full-condition distribution is 

1-7&�|7&�I�	, �898, M5 ∝ 1&�
��DC@� � Z(98�13 = )&�, 1	. (3) 

Formula (3) is a standard distribution, the other eight 

full-condition distributions are also beta distribution. We can 

use Gibbs sampling to obtain all the parameters (a total of 52 

days, 9 categories per day, 52 × 9 = 468 parameters) of the 

post-test sample, and complete Bayesian inference. 

3.2.2. Solution of the Model 

The solving of the model is completed in the OpenBUGS 

software environment. After seeding random numbers, the 

software automatically generates the initial value of 468 

parameters. In order to reduce the self-correlation among 

the post-test samples and to ensure the convergence of the 

MC chain, the sampling step of the sampling interval is 100. 

The orderly loosening algorithm [21] is used to eliminate 

random walking in the MCMC. After 10�  iterations, 

posterrior samples (468 MC chains) of 468 parameters to be 

evaluated was obtained. After each chain throws away the 

first 4999 samples of the burnin period, the parameters 

7	are inferred by the MC method using the remaining 29619 

samples. The corresponding parameter estimates are shown 

in Table 1 (9 categories, 52 values per category). Table 1 

includes mean estimates for each parameter (Mean), 

median estimates (Median), 95% confidence interval CI: 

(2.5% ql, 97.5%qu), standard deviation (SD), and MC error 
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(MCerror). See table 2 for the MC errors of category I to IX 

overseas input with greatest risk and the time point of 

occurrence. Each has a maximum MC error of less than 

5.56×10
-4

. The maximum of (max.MCerror/sd)*100%is 

0.677% (far smaller than 10%), which means that the model 

(2) has high precision
 
[22]. 

Table 1. Summary of Bayesian estimation and some statistics of 468 parameters. 

node Mean Sd MCerror 2.50%ql Median 97.50%qu 

1�� 0.6066 0.08335 0.000494 0.4399 0.6088 0.7621 

1�� 0.5179 0.09425 0.000518 0.3310 0.5190 0.6995 

… … … … … … … 

1��,� 0.4812 0.09475 0.000556 0.2978 0.4807 0.6674 

node Mean Sd MCerror 2.50%ql Median 97.50%qu 

1�� 0.06057 0.04082 0.000230 0.007569 0.05202 0.1612 

1�� 0.07441 0.04936 0.000286 0.009637 0.06430 0.1960 

… … … … … … … 

1��,� 0.1112 0.06001 0.000364 0.02456 0.1013 0.2547 

node Mean Sd MCerror 2.50%ql Median 97.50%qu 

1�� 0.06037 0.04082 0.000224 0.007498 0.05176 0.1623 

1�� 0.07411 0.04924 0.000298 0.009677 0.06386 0.1953 

… … … … … … … 

1��,� 0.07440 0.04953 0.000281 0.009567 0.06392 0.1978 

 

node Mean Sd MCerror 2.50%ql Median 97.50%qu 

1�� 0.09115 0.04916 0.000299 0.01986 0.08314 0.20840 

1�� 0.1109 0.05922 0.000327 0.02440 0.10120 0.25110 

… … … … … … … 

1��,� 0.1115 0.05994 0.000363 0.02396 0.10190 0.25210 

node Mean Sd MCerror 2.50%ql Median 97.50%qu 

1�� 0.06101 0.04122 0.000238 0.007796 0.05221 0.1637 

1�� 0.07364 0.04914 0.000258 0.009641 0.06348 0.1945 

… … … … … … … 

1��,� 0.07385 0.04962 0.000321 0.009074 0.06352 0.1968 

node Mean Sd MCerror 2.50%ql Median 97.50%qu 

1�$ 0.02995 0.02898 0.000167 0.000757 0.02119 0.1073 

1�$ 0.03736 0.03615 0.000187 0.000988 0.02658 0.1345 

… … … … … … … 

1��,$ 0.03702 0.03574 0.000215 0.000999 0.02613 0.1327 

Note: Categories 6-8 are omitted from the table 

 

 

Figure 2. Convergence diagnosis diagram. The upper is the history strace plot graph of posterior samples of 1��, the lower left is the curve graph of kernel 

density estimation of 1��, and the lower right is the autocorrelation graph of 1��. 

3.2.3. Diagnosis of Model 

For the MC chain of 468 parameters in model (2), the 

History-strace-plot plot, the density estimation graph, and the 

Autocorrelation graph are drawn respectively (in the case of 

1��, see Figure 1, the remaining 467 plots are omitted, the 

same below). The History-strace-plots of 468 parameters 

show that after discarding the first 4999 burnin values, the MC 

chain of 468 parameters converge and each limit distribution 
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is their own posterior distribution. The autocorred graph of 

each MC chain shows that after the lag period ≥2, the 

autocorrelation coefficient is close to 0, and each MC chain 

can be regarded as a MC chain of the independent and 

identically distribution. Statistical inferences can be made 

using the corresponding MC chain as a posterior sample (see 

Figure 1). the category I 1&,�  presents symmetrical 

distribution characteristics (it is also proved by 52 box 

diagrams of the first category in Figure 2), and the probability 

of the other nine categories presents a more severe 

right-biased distribution, with mean estimates being more 

affected by extreme values. Their robust estimates (median 

value) and corresponding 95% confidence interval are taken 

as the risk probabilities of the nine categories for discussion. 

 

Figure 3. The box plot of posterior sample of 1�� to 52,1p  

Table 2. Summary of maximum MC error and corresponding information of each MC chain of model (2). 

node Max.MC error Sd 
Time point of 

occurrence 

The frequency of the 

sample calculation 

Prediction of the 

model (2) 

(Max.Mc error/sd) 

100% 

1&� of /� 0.000556 0.09475 2020-4-23 0.5000 0.4807 0.587% 

1&� of /� 0.000371 0.05730 2020-3-12 0.0000 0.09741 0.647% 

1&� of /� 0.000408 0.07016 2020-4-20 0.0000 0.5004 0.581% 

1&� of /� 0.000443 0.07363 2020-4-17 0.73333 0.3549 0.602% 

1&� of /� 0.000301 0.04888 2020-3-9 0.0000 0.06333 0.616% 

1&� of /� 0.000318 0.05884 2020-4-10 0.05263 0.4106 0.540% 

1&� of /� 0.000432 0.06811 2020-3-6 0.6875 0.3656 0.6345% 

1&� of /� 0.000276 0.04386 2020-3-11 0.0000 0.05557 0.629% 

1&� of /� 0.000232 0.03429 2020-3-12 0.0000 0.02538 0.677% 

Note: 1&� 	denotes the probability of /� (� � 1,2, … 9	. 

4. Interpretation of Result 

The 52-day 2020-3-3 to 4-23 days are considered to be 52 

time points, with 0 new cases of overseas input in nine 

categories with many time points. The frequency (proportion) 

of overseas input is calculated with sample data, and the input 

frequency of the corresponding time point is 0 or 1. However, 

this does not mean that the risk of overseas input in these 

points is 0 or that the risk of overseas input is 100%. 

According to probability theory, the estimation error is large at 

these time points corresponding to these extreme values [23]. 

The calculation frequency of each of the five time points 

(2020-3-9, 3-11, 3-12, and 4-20) in Table 2 is 0, which is also 

explained by the maximum MC error (the second column in 

Table 2). Using the model (2) calculated by the nine categories 

of overseas input risk (converted to percentages). The nine 

categories show the risk change characteristics of four stages. 

In order to clearly express the change characteristics of each 

stage, the four categories (G1, G2, G4, G6) with large 

overseas input risks and the remaining five categories are 

respectively plotted as point and line graphs. The statistical 

values of each category are calculated (Table 3). The results 

show that: (1) In the first stage (2020-3-3 (No. 1) to 3-21 (No. 

21)), except for the rapid rise of category G1 and the rapid 

decline of category G7, other types of input risks decline 

slowly. (2) In the second stage (2020-3-22 (No. 22) to 4-7 (No. 

39)), except for the rapid decline of category G1 and the rapid 

rise of category G4, other types of input risks rose slowly and 

gradually declined after seven days.(3) In the third stage 

(2020-4-8 (No. 40) to 4-18 (No. 49)), the G4 category of 

overseas input risks declined rapidly, while other types of 

input risks showed an obvious upward trend. (4) In the fourth 

stage (after 4-18 (No. 50)), the input risks of each category 

fluctuate steadily (Figure 3). The overseas input risk 

probability of nine categories is between 0 and 1, which 

indicates that the overseas input risk probability obtained by 

model (2) can truly reflect the spatial distribution of overseas 

input cases, which is more practical than the frequency to 

describe. 
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Figure 4. Risk probability of imported cases from 9 categories of provinces (cities) from March 3 to April 8, 2020 (%). 

Table 3. Relevant statistics of overseas input risk in 9 categories of provinces (cities) from March 3 to April 8, 2020 (%). 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 

Maximum 85.060 10.190 50.040 76.450 7.337 46.200 36.560 5.557 2.658 

Minimum 14.020 1.817 1.138 2.172 1.142 0.634 0.476 0.473 0.467 

Range 71.040 8.373 48.902 74.278 6.195 45.566 36.084 5.084 2.191 

Sd 19.363 2.384 9.067 20.304 1.718 10.144 7.123 0.990 0.624 

Mean 53.482 5.905 5.471 14.867 3.998 4.662 3.690 1.615 1.523 

  

         (A) Mean of median value of the input risk for the first stage         (B) Mean of median value value of the input risk for the second stage 

  

         (C) Mean of median value of the input risk for the third stage            (D) Mean of median value of the input risk for the forth stage 

Note: The original map data is a public map of the Ministry of Natural Resources (GS (2019) 1829) 

Figure 5. Risk map of overseas input from March 3 to April 23, 2020. 
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In order to intuitively display these characteristics on the map, 

to calculate the average of the probability estimates (median 

values) of overseas input risks in four periods as the 

representative values of this period (see Figure 3), and use Adobe 

Illustrator software to draw the time-space change chart of 

overseas input risks (see Figure 4). The comprehensive analysis 

combined with the input risk estimates (Figure 3) shows that: (1) 

the input frequency is 0, and there is still overseas input risk. (2) 

In the long run, the highest risk area is still the first category of 12 

provinces and cities represented by Beijing, Shanghai and 

Guangdong, including 10 coastal/border provinces and cities. 

There are 7 days in the study period, and the risk value of the 

fourth category (Heilongjiang and Shanxi) is higher than that of 

the first category. (2) Before March 21, 2020 (the first stage), the 

first type of overseas input risk is the highest (59.613%). (3) 

From March 22 to April 18, 2020 (the second and third stages), 

the top two overseas input risks are both Category I and Category 

IV. However, the first category gradually decreased (from 

60.50% to 37.00%), and the fourth category gradually increased 

(from 16.1% to 33.8%). (4) After April 19, 2020, the highest 

input risks are the first category, the third category (Shaanxi, 

Jilin), and the fourth category. The overseas input risk of other six 

categories are less than 5%. For the sixth, seventh, and eighth 

category, their overseas input risks of are stable around 2%. (5) 

The last two categories of overseas input risks are the eighth 

category (Henan) and ninth category (Anhui). (6) The fourth 

category has the largest fluctuation in overseas input risk. 

5. Conclusion and Prospect 

Using two clustering methods (Average) and similar 

(Mcquitty), the 25 provinces and cities with overseas inputs 

were clustered with indicators, resulting in nine distinct 

categories. The 12 provinces and cities represented by Beijing, 

Shanghai and Guangdong are the first category, accounting for 

57.42% of the total number of imported cases from abroad. 

The fourth category Heilongjiang and Shanxi have 12 days of 

new overseas imported cases more than 11 people per day, and 

the total proportion of overseas imported cases are 27.86%. 

Shaanxi and Jilin are the third category, Inner Mongolia is the 

sixth category, and the total proportion of imported cases 

abroad are 3.07% and 2.95% respectively. there are more than 

98.69% of foreign imported cases in 52 days in 

above-mentioned 4 categories, 17 provinces and cities. Based 

on the clustering results, a multinomial distribution under the 

Bayesian framework is established. The model parameters 

represent the probability of overseas input risk of 9 categories 

every day within 52 days. The MCMC method is used to 

obtain the MC chain of 468 parameters, and the limit 

distribution is their own posterior distribution, which is 

suitable for statistical inference with the corresponding MC 

chain as posterior sample. During the study period, 25 

provinces and cities have input risks. The highest risk zone of 

overseas input is still the first category of 12 provinces and 

cities represented by Beijing, Shanghai and Guangdong, 

including 10 coastal/border provinces and cities. During the 

study period, overseas input risk of the fourth category 

(Heilongjiang, Shanxi) is higher than the first category, and 

the input risk of this category fluctuates the most. With 

2020-3-22, 4-7, 4-18 as the time nodes, the study period is 

divided into four stages. The higher risk of overseas input in 

the four stages is as follows: the first category in the first stage 

(59.613%); In the second and third stages, the first (from 

60.51% to 37.06%), and the fourth category (from 16.07% to 

33.85%); In the fourth stage, category I (42.62%), category III 

(17.56%) and category IV (10.06%). The fourth category has 

the largest fluctuation in overseas input risk. During the study 

period, overseas input risks of the eighth (Henan) and ninth 

(Anhui) categories have been in the last two places. 

For overseas input case data with zero expansion, regional 

loss and large difference in data size. Bayesian multinomial 

distribution model based on clustering results achieves the 

estimation of overseas input risk, which is superior to the 

traditional frequency characterization method. The relevant 

research needs to be continued by colleagues. 
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